
Hear “No Evil”, See “Kenansville”*: Efficient and
Transferable Black-Box Attacks on Speech

Recognition and Voice Identification Systems

Hadi Abdullah, Muhammad Sajidur Rahman, Washington Garcia, Logan Blue,
Kevin Warren, Anurag Swarnim Yadav, Tom Shrimpton and Patrick Traynor

University of Florida
{hadi10102, rahmanm, w.garcia, bluel, kwarren9413, anuragswar.yadav, teshrim, traynor}@ufl.edu

Abstract—Automatic speech recognition and voice identifica-
tion systems are being deployed in a wide array of applications,
from providing control mechanisms to devices lacking traditional
interfaces, to the automatic transcription of conversations and
authentication of users. Many of these applications have signif-
icant security and privacy considerations. We develop attacks
that force mistranscription and misidentification in state of the
art systems, with minimal impact on human comprehension.
Processing pipelines for modern systems are comprised of signal
preprocessing and feature extraction steps, whose output is fed to
a machine-learned model. Prior work has focused on the models,
using white-box knowledge to tailor model-specific attacks. We
focus on the pipeline stages before the models, which (unlike
the models) are quite similar across systems. As such, our
attacks are black-box and transferable, and demonstrably achieve
mistranscription and misidentification rates as high as 100% by
modifying only a few frames of audio. We perform a study via
Amazon Mechanical Turk demonstrating that there is no statisti-
cally significant difference between human perception of regular
and perturbed audio. Our findings suggest that models may learn
aspects of speech that are generally not perceived by human
subjects, but that are crucial for model accuracy. We also find
that certain English language phonemes (in particular, vowels)
are significantly more susceptible to our attack. We show that
the attacks are effective when mounted over cellular networks,
where signals are subject to degradation due to transcoding, jitter,
and packet loss.

I. INTRODUCTION

The telephony network is still the most widely used mode
of audio communication on the planet, with billions of phone
calls occurring every day within the USA alone [3]. Such
a degree of activity makes the telephony network a prime
target for mass surveillance by governments. However, hiring
individual human listeners to monitor these conversations can
not scale. To overcome this bottleneck, governments have used
Machine Learning (ML) based Automatic Speech Recogni-
tion (ASR) systems and Automatic Voice Identification (AVI)
systems to conduct mass surveillance of their populations.
Governments accomplish this by employing ASR systems to
flag anti-state phone conversations and AVI systems to identify
the participants [6]. The ASR systems convert the phone
call audio into text. Next, the government can use keywords

*The title of our paper plays on “Hear No Evil, See No Evil” and we use
the attacks described in our paper to generate the above title. Thus, when a
model is fed “No Evil”, it mistranscribes it as “Kenansville”, a town located
in Central Florida - text completely unrelated to the audio input.

searches on the audio transcripts to flag potentially dissenting
audio conversations [8]. Similarly, AVI systems identify the
participants of the phone call using voice signatures.

Currently, there does not exist any countermeasure for
a dissident attempting to circumvent this mass surveillance
infrastructure. There are several targeted attacks against ASR
and AVI systems that exist in the current literature. However,
none of these consider the limitations of the dissident (near-
real-time, no access/knowledge of the state’s ASR and AVI
systems, success over the telephony network, limited queries,
transferable, high audio quality). Targeted attacks either require
white-box knowledge [32], [83], [30], [71], [46] generate noisy
audio [18], [28], are query intensive [19], [78], or not resistant
to the churn of the telephone network. For a comprehensive
overview of the state of the current attacks with respect to our
own, we refer the reader to Table IV in the Appendix.

In this work, we propose the first near-real-time, black-
box, model agnostic method to help evade the ASR and AVI
systems employed as part of the mass telephony surveillance
infrastructure1. Using our method, a dissident can force any
ASR system to mistranscribe their phone call audio and an
AVI system to misidentify their voice. As a result, governments
will lose trust in their surveillance models and invest greater
resources to account for our attack. Additionally, by forcing
mistranscriptions, our attack will prevent governments from
successfully flagging the conversation. Our attack is untargeted
i.e., it can not generate selected words or specific speakers.
However, in the absence of any technique that can attain these
goals in the severely constrained setting of the dissident, our
methods ability to achieve a limited set of goals (i.e., evasion)
is still valuable. This can be used by dissident as the first line
of defense.

Our attack is specifically designed to address the needs
of the dissident attempting to evade the audio surveillance
infrastructure. The following are the key contributions of our
work:

• Our attack can circumvent any state of the art
ASR and AVI system in near real-time, black-box,
transferable manner: A dissident attempting to evade

1Recently, we have seen a number of attack papers against ASR and AVI
systems. To better understand why our work in novel and clearly differentiate
it from existing literature, we encourage the readers to review Table IV in the
Appendix.

ar
X

iv
:1

91
0.

05
26

2v
1

 [
cs

.C
R

]
 1

1
O

ct
 2

01
9

mass surveillance will not have access to the target
ASR or AVI systems. A key contribution of this work
is the ability to generate audio samples that will induce
errors in a variety ASR and AVI systems in a black-
box setting, where the adversary has no knowledge
of the target model. Current black-box attacks against
audio models [19] use genetic algorithms, which still
require hundreds of thousands of queries and days
of execution to generate a single attack sample. In
contrast, our attack can generate a sample in fewer
than 15 queries to the target model. Additionally, we
show that if dissident can not query the target model,
which is most likely the case, our adversarial audio
samples will still be transferable i.e., evade unknown
models.

• Attack does not significantly impact human-
perceived quality or comprehension and works
real audio environments: The dissident must be
confident that the attack perturbations will maintain
the quality of the phone call audio, survive the churn
of the telephony network and still be able to evade
the ASR and AVI systems. Therefore, we design
our attack to introduce imperceptible changes, such
that there is no significant degradation of the audio
quality. We substantiate this claim by conducting an
Amazon Turk user study. Similarly, we test our attacks
over the cellular network, which introduces significant
audio quality degradation due to transcoding, jitter
and packet loss. We show that even after undergoing
such serious degradation and loss, our attack audio
sample is still effective in tricking the target ASR
and AVI systems. To our knowledge, our work is
the first to generate attack audio that is robust to
the cellular network. Therefore, our attack ensures
that the dissenter’s adversarial audio will not have
any significant impact on quality and will evade the
surveillance models after having being intercepted
within telephony networks.

• Robust to existing adversarial detection and de-
fense mechanisms: Finally, we evaluate our attack
against existing techniques detecting or defending
adversarial samples. For the former, we test the at-
tack against the temporal based method, which has
shown excellent results against traditional adversarial
attacks [82]. We show that this method has limited
effectiveness for our attack. It is not better than
randomly choosing whether an attack is in progress
or not. Regarding defenses, we test our attack against
adversarial training, which has shown promise in the
adversarial image space [53]. We observe that this
method slightly improves model robustness, but at a
cost of significant decrease in model accuracy.

The remainder of this paper is organized as follows:
Section II provides background information on topics ranging
from signal processing to phonemes; Section III details our
methodology, including our assumptions and hypothesis; Sec-
tion IV presents our experimental setup and parameterization;
Section V shows our results; Section VI offers further dis-
cussion; Section VII discusses related work; and Section VIII
provides concluding remarks.

Preprocessing
 (a)

Low-Pass
Filter

Noise Filter

Decoding
 (c)

Feature
Extraction (b)

"Hello,
how're you?"

Text

Accoustic
Models

Fig. 1: Modern ASR systems take several steps to convert
speech into text. (a) Preprocessing removes high frequencies
and noise from the audio waveform, (b) feature extraction
extracts the most important features of the audio sample, and
(c) decoding converts the features into text.

II. BACKGROUND

A. Automatic Speech Recognition (ASR) Systems:

An ASR system converts a sample of speech into text using
the steps seen in Figure 1.

(a) Preprocessing Preprocessing in ASR systems attempts
to remove noise and interference, yielding a “clean” signal.
Generally, this consists of noise filters and low pass filters.
Noise filters remove unwanted frequency components from
the signal that are not directly related to the speech. The
exact process by which the noise is identified and removed
varies among different ASR systems. Additionally, since the
bulk of frequencies in human speech fall between 300 Hz and
3000Hz [36], discarding higher frequencies with a low pass
filter helps remove unnecessary information from the audio.

(b) Feature Extraction Next, the signal is converted into
overlapping segments, or frames, each of which is then passed
through a feature extraction algorithm. This algorithm retains
only the salient information about the frame. A variety of
signal processing techniques are used for feature extraction,
including Discrete Fourier Transforms (DFT), Mel Frequency
Cepstral Coefficients (MFCC), Linear Predictive Coding, and
the Perceptual Linear Prediction method [64]. The most com-
mon of these is the MFCC method, which is comprised of
several steps. First, a magnitude DFT of an audio sample is
taken to extract the frequency information. Next, the Mel filter
is applied to the magnitude DFT, as it is designed to mimic the
human ear. This is followed by taking the logarithm of powers,
as the human ear perceives loudness on a logarithmic scale.
Lastly, this output is given to the Discrete Cosine Transform
(DCT) function that returns the MFCC coefficients.

Some modern ASR systems use data-driven learning tech-
niques to establish which features to extract. Specifically, a
machine learning layer (or a completely new model) is trained
to learn which features to extract from an audio sample in
order to properly transcribe the speech [81].

(c) Decoding During the last phase, the extracted features
are passed to a decoding function, often implemented in the
form of a machine learning model. This model has been
trained to correctly decode a sequence of extracted features
into a sequence of characters, phonemes, or words, to form
the output transcription. ASR systems employ a variety of sta-
tistical models for the decoding step, including Convolutional
Neural Networks (CNNs) [66], [17], [55], Recurrent Neural
Networks (RNNs) [40], [67], [68], [69], Hidden Markov
Models (HMMs) [39], [69], and Gaussian Mixture Models
(GMMs) [50], [69]. Each model type provides a unique set

2

of properties and therefore the type of model selected directly
affects the ASR system quality. Depending on the model,
the extracted features may be re-encoded into a different,
learnable feature space before proceeding to the decoding
stage. A recent innovation is the paradigm known as end-
to-end learning, which combines the entire feature extraction
and decoding phase into one model, and greatly simplifies
the training process. The most sophisticated methods will
leverage many machine learning models during the decoding
process. For example, one may employ a dedicated language
model, in addition to the decoding function, to improve the
ASR’s performance on high-level grammar and rhetorical
concepts [20]. Our attacks are agnostic to how the target ASR
system is implemented, making our attack completely black-
box. To our knowledge, we are the first paper to introduce
black-box attacks in a limited query environment.

B. Automatic Voice Identification (AVI) Systems:

AVI systems are trained to recognize the speaker of a
voice sample. The modern AVI pipeline is mostly similar to
the one used in the ASR systems, shown in Figure 1. While
both systems use the preprocessing and feature extraction
steps, the difference lies in the decoding step. Even though
the underlying statistical model (i.e., CNNs, RNNs, HMMs
or GMMs) at the decoding stage remains the same for both
systems, what each model outputs is different. In the case of
ASR systems, the decoding step converts the extracted features
into a sequence of characters, phonemes, or words, to form
the output transcription. In contrast, the decoding step for
AVI models outputs a single label which corresponds to an
individual. AVI systems are commonly used in security critical
domains as an authentication mechanism to verify the identity
of a user. In our paper, we present attacks to prevent the AVI
models from correctly identifying speakers. To our knowledge,
we are the first to do so in a limited query, black-box setting.

C. Data-Transforms

In this paper, we use standard signal processing trans-
formations to change the representation of audio samples.
The transforms can be classified into two categories: data-
independent and data-dependent.

1) Data-Independent Transforms: These represent input
signals in terms of fixed basis functions (e.g., complex expo-
nential functions, cosine functions, wavelets). Different basis
functions extract different information about the signal being
transformed. For our attack, we focus on the DFT, which
exposes frequency information. We do so because the DFT
is well understood and commonly used in speech processing,
both as a stand-alone tool, and as part of the MFCC method,
as discussed in Section II-A.

The DFT, shown in Figure 2(b), represents a discrete-time
series x0, x1, . . . , xN−1 via its frequency spectrum — a se-
quence of complex values f0, f1, . . . , fN−1 that are computed
as fk =

∑N−1
n=0 xn exp

(
(−j2π) kN n

)
where j =

√
−1, for

k = 0, 1, . . . , N − 1. One can view fk as the projection
of the time series onto the k-th basis function, a (discrete-
time) complex sinusoid with frequency k/N (i.e., a sinusoid
that completes k cycles over a sequence of N evenly spaced
samples). Intuitively, the complex-valued fk describes “how

Fig. 2: (a) Original audio “about” [1]; (b) the corresponding
DFT and (c) SSA decompositions. In both, low magnitude
components (frequencies or eigenvectors, respectively) con-
tribute little to the original audio.

much” of the time series x0, x1, . . . , xN−1 is due to a sinu-
soidal waveform with frequency k/N . It compactly encodes
both the magnitude of the k-th sinusoid’s contribution, as
well as phase information, which determines how the k-th
sinusoid needs to be shifted (in time). The DFT is invertible,
meaning that a time-domain signal is uniquely determined by
a given sequence of coefficients. Filtering operations (e.g. low-
pass/high-pass filters) allow one to accentuate or downplay the
contribution of specific frequency components; in the extreme,
setting a non-zero fk to zero ensures that the resulting time-
domain signal will not contain that frequency.

2) Data-Dependent Transforms: Unlike the DFT, data-
dependent transforms do not use predefined basis functions.
Instead, the input signal itself determines the effective basis
functions: a set of linearly independent vectors which can
be used to reconstruct the original input. Abstractly, an input
sequence x with |x| = n can be thought of as a vector in the
space Rn, and the data-driven transform finds the bases for
the input x. Singular Spectrum Analysis (SSA) is a spectral
estimation method that decomposes an arbitrary time series
into components called eigenvectors, shown in Figure 2(c).
These eigenvectors represent the various trends and noise
that make up the original series. Intuitively, eigenvectors
corresponding to eigenvalues with smaller magnitudes convey
relatively less information about the signal, while those with
larger eigenvalues capture important structural information, as
long-term “shape” trends, and dominant signal variation from
these long-term trends. Similar to the DFT, the SSA is also
linear and invertible. Inverting an SSA decomposition after
discarding eigenvectors with small eigenvalues is a means to
remove noise from the original series.

D. Cosine Similarity

Cosine Similarity is a metric used to measure the similarity
of two vectors. This metric is often used to measure how
similar two samples of text are to one another (e.g., as part
of the TF-IDF measure [45]). In order to calculate this, the

3

sample texts are converted into a dictionary of vectors. Each
index of the vector corresponds to a unique word, and the
index value is the number of times the word occurs in the
text. The cosine similarity is calculated using the equation
cos(x, y) = x·y

||x||·||y|| , where x and y are the sentence samples.
Cosine values close to one mean that the two vectors, or in
this case sentences, have high similarity.

E. Phonemes

Human speech is made up of various component sounds
known as phonemes. The set of possible phonemes is fixed
due to the anatomy that is used to create them. The number
of phonemes that make up a given language varies. English,
for example, is made up of 44 phonemes. Phonemes can be
divided into several categories depending on how the sound
is created. These categories include vowels, fricatives, stops,
affricates, nasal, and glides. In this paper, we mostly deal with
fricatives and vowels; however, for completeness, will briefly
discuss the other categories here.

Vowels are created by positioning the tongue and jaw such
that two resonance chambers are created within the vocal tract.
These resonance chambers create certain frequencies, known
as formants, with much greater amplitudes than others. The
relationship between the formants determines which vowel is
heard. Examples of vowels include iy, ey, and oy in the words
beet, bait, and boy, respectively.

Fricatives are generated by creating a constriction in the
airway that causes turbulent flow to occur. Acoustically, frica-
tives create a wide range of higher frequencies, generally above
1 kHz, that are all similar in intensity. Common fricatives
include the s and th sounds found in words like sea and thin.

Stops are created by briefly halting air flow in the vocal
tract before releasing it. Common stops in English include b,
g, and t found in the words bee, gap, and tea. Stops generally
create a short section of silence in the waveform before a rapid
increase in amplitude over a wide range of frequencies.

Affricates are created by concatenating a stop with a
fricative. This results in a spectral signature that is similar
to a fricative. English only contains two affricates, jh and ch
which can be heard in the words joke and chase, respectively.

Nasal phonemes are created by forcing air through the
nasal cavity. Generally, nasals have less amplitude than other
phonemes and consist predominantly of lower frequencies.
English nasals include n and m such as in the words noon
and mom.

Glides are unlike other phonemes, since they are not
grouped by their means of production, but instead by their
roll in speech. Glides are acoustically similar to vowels but
are instead used like consonants, acting as transitions between
different phonemes. Examples of glides include the l and y
sounds in lay and yes.

III. METHODOLOGY

A. Hypothesis and Threat Model

Hypothesis: Our central hypothesis is that ASR and AVI
systems rely on components of speech that are non-essential
for human comprehension. Removal of these components can

Signal
Decomposition

(a)

Reconstruction
(c)

Measurement
(e)

Thresholding
(b)

ASR
(d)

“the meeting is
now Charmed”

W1, W2, W3, ...
<latexit sha1_base64="CB8TOxNN2vRNxUL7XzSUxLvaGzY=">AAAB+3icbZDLSsNAFIZP6q3WW6xLN4NFcFFCUgVdFty4rGCbQhvCZDpph04uzEzEEvoqblwo4tYXcefbOGmz0NYDM3z8/znMmT9IOZPKtr+Nysbm1vZOdbe2t39weGQe13syyQShXZLwRPQDLClnMe0qpjjtp4LiKODUDaa3he8+UiFZEj+oWUq9CI9jFjKClZZ8s+76ThO5fqu4LpvIsizfbNiWvSi0Dk4JDSir45tfw1FCsojGinAs5cCxU+XlWChGOJ3XhpmkKSZTPKYDjTGOqPTyxe5zdK6VEQoToU+s0EL9PZHjSMpZFOjOCKuJXPUK8T9vkKnwxstZnGaKxmT5UJhxpBJUBIFGTFCi+EwDJoLpXRGZYIGJ0nHVdAjO6pfXodeyHM33V412u4yjCqdwBhfgwDW04Q460AUCT/AMr/BmzI0X4934WLZWjHLmBP6U8fkDjKGRgw==</latexit><latexit sha1_base64="CB8TOxNN2vRNxUL7XzSUxLvaGzY=">AAAB+3icbZDLSsNAFIZP6q3WW6xLN4NFcFFCUgVdFty4rGCbQhvCZDpph04uzEzEEvoqblwo4tYXcefbOGmz0NYDM3z8/znMmT9IOZPKtr+Nysbm1vZOdbe2t39weGQe13syyQShXZLwRPQDLClnMe0qpjjtp4LiKODUDaa3he8+UiFZEj+oWUq9CI9jFjKClZZ8s+76ThO5fqu4LpvIsizfbNiWvSi0Dk4JDSir45tfw1FCsojGinAs5cCxU+XlWChGOJ3XhpmkKSZTPKYDjTGOqPTyxe5zdK6VEQoToU+s0EL9PZHjSMpZFOjOCKuJXPUK8T9vkKnwxstZnGaKxmT5UJhxpBJUBIFGTFCi+EwDJoLpXRGZYIGJ0nHVdAjO6pfXodeyHM33V412u4yjCqdwBhfgwDW04Q460AUCT/AMr/BmzI0X4934WLZWjHLmBP6U8fkDjKGRgw==</latexit><latexit sha1_base64="CB8TOxNN2vRNxUL7XzSUxLvaGzY=">AAAB+3icbZDLSsNAFIZP6q3WW6xLN4NFcFFCUgVdFty4rGCbQhvCZDpph04uzEzEEvoqblwo4tYXcefbOGmz0NYDM3z8/znMmT9IOZPKtr+Nysbm1vZOdbe2t39weGQe13syyQShXZLwRPQDLClnMe0qpjjtp4LiKODUDaa3he8+UiFZEj+oWUq9CI9jFjKClZZ8s+76ThO5fqu4LpvIsizfbNiWvSi0Dk4JDSir45tfw1FCsojGinAs5cCxU+XlWChGOJ3XhpmkKSZTPKYDjTGOqPTyxe5zdK6VEQoToU+s0EL9PZHjSMpZFOjOCKuJXPUK8T9vkKnwxstZnGaKxmT5UJhxpBJUBIFGTFCi+EwDJoLpXRGZYIGJ0nHVdAjO6pfXodeyHM33V412u4yjCqdwBhfgwDW04Q460AUCT/AMr/BmzI0X4934WLZWjHLmBP6U8fkDjKGRgw==</latexit><latexit sha1_base64="CB8TOxNN2vRNxUL7XzSUxLvaGzY=">AAAB+3icbZDLSsNAFIZP6q3WW6xLN4NFcFFCUgVdFty4rGCbQhvCZDpph04uzEzEEvoqblwo4tYXcefbOGmz0NYDM3z8/znMmT9IOZPKtr+Nysbm1vZOdbe2t39weGQe13syyQShXZLwRPQDLClnMe0qpjjtp4LiKODUDaa3he8+UiFZEj+oWUq9CI9jFjKClZZ8s+76ThO5fqu4LpvIsizfbNiWvSi0Dk4JDSir45tfw1FCsojGinAs5cCxU+XlWChGOJ3XhpmkKSZTPKYDjTGOqPTyxe5zdK6VEQoToU+s0EL9PZHjSMpZFOjOCKuJXPUK8T9vkKnwxstZnGaKxmT5UJhxpBJUBIFGTFCi+EwDJoLpXRGZYIGJ0nHVdAjO6pfXodeyHM33V412u4yjCqdwBhfgwDW04Q460AUCT/AMr/BmzI0X4934WLZWjHLmBP6U8fkDjKGRgw==</latexit>

W1, W2, 0, ...
<latexit sha1_base64="HtfrRNWgNQw/eZE7hc4nNJ7o2qM=">AAACC3icbZC7SgNBFIZnvcb1FrW0GRIEi7DsBkHLgI1lBJMNJGGZnZwkQ2YvzJwVw5LexlexsVDE1hew822cXApNPDDw8f/nzJn5w1QKja77ba2tb2xubRd27N29/YPD4tFxUyeZ4tDgiUxUK2QapIihgQIltFIFLAol+OHoeur796C0SOI7HKfQjdggFn3BGRopKJZsP/Aq1A+qFdpBeMDZlbmC3iR3JxXqOE5QLLuOOyu6Ct4CymRR9aD41eklPIsgRi6Z1m3PTbGbM4WCS5jYnUxDyviIDaBtMGYR6G4+WzyhZ0bp0X6izImRztTfEzmLtB5HoemMGA71sjcV//PaGfavurmI0wwh5vNF/UxSTOg0GNoTCjjKsQHGlTBvpXzIFONo4rNNCN7yl1ehWXU8w7cX5VptEUeBnJISOSceuSQ1ckPqpEE4eSTP5JW8WU/Wi/Vufcxb16zFzAn5U9bnD5xWmN8=</latexit><latexit sha1_base64="HtfrRNWgNQw/eZE7hc4nNJ7o2qM=">AAACC3icbZC7SgNBFIZnvcb1FrW0GRIEi7DsBkHLgI1lBJMNJGGZnZwkQ2YvzJwVw5LexlexsVDE1hew822cXApNPDDw8f/nzJn5w1QKja77ba2tb2xubRd27N29/YPD4tFxUyeZ4tDgiUxUK2QapIihgQIltFIFLAol+OHoeur796C0SOI7HKfQjdggFn3BGRopKJZsP/Aq1A+qFdpBeMDZlbmC3iR3JxXqOE5QLLuOOyu6Ct4CymRR9aD41eklPIsgRi6Z1m3PTbGbM4WCS5jYnUxDyviIDaBtMGYR6G4+WzyhZ0bp0X6izImRztTfEzmLtB5HoemMGA71sjcV//PaGfavurmI0wwh5vNF/UxSTOg0GNoTCjjKsQHGlTBvpXzIFONo4rNNCN7yl1ehWXU8w7cX5VptEUeBnJISOSceuSQ1ckPqpEE4eSTP5JW8WU/Wi/Vufcxb16zFzAn5U9bnD5xWmN8=</latexit><latexit sha1_base64="HtfrRNWgNQw/eZE7hc4nNJ7o2qM=">AAACC3icbZC7SgNBFIZnvcb1FrW0GRIEi7DsBkHLgI1lBJMNJGGZnZwkQ2YvzJwVw5LexlexsVDE1hew822cXApNPDDw8f/nzJn5w1QKja77ba2tb2xubRd27N29/YPD4tFxUyeZ4tDgiUxUK2QapIihgQIltFIFLAol+OHoeur796C0SOI7HKfQjdggFn3BGRopKJZsP/Aq1A+qFdpBeMDZlbmC3iR3JxXqOE5QLLuOOyu6Ct4CymRR9aD41eklPIsgRi6Z1m3PTbGbM4WCS5jYnUxDyviIDaBtMGYR6G4+WzyhZ0bp0X6izImRztTfEzmLtB5HoemMGA71sjcV//PaGfavurmI0wwh5vNF/UxSTOg0GNoTCjjKsQHGlTBvpXzIFONo4rNNCN7yl1ehWXU8w7cX5VptEUeBnJISOSceuSQ1ckPqpEE4eSTP5JW8WU/Wi/Vufcxb16zFzAn5U9bnD5xWmN8=</latexit><latexit sha1_base64="HtfrRNWgNQw/eZE7hc4nNJ7o2qM=">AAACC3icbZC7SgNBFIZnvcb1FrW0GRIEi7DsBkHLgI1lBJMNJGGZnZwkQ2YvzJwVw5LexlexsVDE1hew822cXApNPDDw8f/nzJn5w1QKja77ba2tb2xubRd27N29/YPD4tFxUyeZ4tDgiUxUK2QapIihgQIltFIFLAol+OHoeur796C0SOI7HKfQjdggFn3BGRopKJZsP/Aq1A+qFdpBeMDZlbmC3iR3JxXqOE5QLLuOOyu6Ct4CymRR9aD41eklPIsgRi6Z1m3PTbGbM4WCS5jYnUxDyviIDaBtMGYR6G4+WzyhZ0bp0X6izImRztTfEzmLtB5HoemMGA71sjcV//PaGfavurmI0wwh5vNF/UxSTOg0GNoTCjjKsQHGlTBvpXzIFONo4rNNCN7yl1ehWXU8w7cX5VptEUeBnJISOSceuSQ1ckPqpEE4eSTP5JW8WU/Wi/Vufcxb16zFzAn5U9bnD5xWmN8=</latexit>

Component
Weights

Modified Voice Signal

Threshold Update

Components

Digitized Voice
Signal

Transcription

“I'm eating a
sandwich arms”

Fig. 3: The figure shows the steps involved in generating
an attack audio sample. First, the target audio sample is
passed through a signal decomposition function (a) which
breaks the input signal into components. Next, subject to some
constraints, a subset of the components are discarded during
thresholding (b). A perturbed audio sample is reconstructed
(c) using the remaining weights from (a) and (b) . The
audio sample is then passed to the ASR/AVI system (d) for
transcription. The difference between the transcription of the
perturbed audio and the original audio is measured (e). The
thresholding constraints are updated accordingly (c) and the
entire process is repeated.

dramatically reduce the accuracy of ASR system transcriptions
and AVI system identifications without significant loss of audio
clarity. Our methods and experiments are designed to test this
hypothesis.

Threat Model and Assumptions: For the purposes of this
paper, we define the attacker or adversary as a person who is
aiming to trick an ASR or AVI system via audio perturbations.
In contrast, we define the defender as the owner of the target
system.

We assume the attacker has no knowledge of the type,
weights, architecture, or layers of the target ASR or AVI
system. Thus, we treat each system as a black-box to which
we make requests and receive responses. We also assume
the attacker can only make a limited number of queries to
the target model, as a large number of queries will alert the
defender of the attacker’s activities. Furthermore, the attacker
has less computational resources than the defender.

We assume the defender has the ability to train an ASR or
AVI system. Additionally, they may use any type of machine
learning model, feature extraction, or preprocessing to create
their ASR or AVI system. Finally, the defender is able to
monitor incoming queries to their system and prevent attackers
from performing large numbers of queries.

B. Attack Steps

Readers might incorrectly assume that certain trivial attacks
might be able to achieve the goals of the dissident i.e.,
evade the model while maintaining high audio quality. One
such trivial attack includes adding white-noise to the speech
samples, expecting a mistranscription by the model. However,
such a an attack will fail. We discuss in detail how we test this
trivial attack and the corresponding results in Appendix A.
Similarly we introduce a simple impulse perturbation tech-
nique that exposes the sensitivity of ASR systems, discussed
in Appendix B1. Realizing the limitations of this approach, we
leave its details to Appendix B1 to B4. We continue our study

4

to develop a more robust attack algorithm in the following
sections.

The attack should meet certain constraints: First, it should
introduce artificial noise to the audio sample that exploits
the ASR/AVI system and forces an incorrect model output.
Second, the distortion should have little to no impact on the
understandability of the perturbed audio file for the human
listener.

The attack steps are outlined in Figure 3. During decompo-
sition, shown in Figure 3(a), we pass the audio sample to the
selected algorithm (DFT or SSA). The algorithm decomposes
the audio into individual components and their corresponding
intensities. Next, we threshold these components, as shown in
Figure 3(b). During thresholding, we remove the components
whose intensity falls below a certain threshold. The intuition
for doing so is that the lower intensity components are less
perceptible to the human ear and will likely not affect a user’s
ability to understand the audio. We discuss how the algorithm
calculates the correct threshold in the next paragraph. We then
construct a new audio sample from the remaining components,
using the appropriate inverse transform, shown in Figure 3(c).
Next, the audio is passed on to the model for inference,
Figure 3(d). If the system being attacked is an ASR, then
the model outputs a transcription. On the other hand if the
target system is an AVI, the model outputs a speaker label.
The model output is compared with that of the original during
the measurement step, Figure 3(e).

The goal of the algorithm is to calculate the optimum
threshold, which discards the least number of components
whilst still forcing the model to misinterpret the audio sample.
Discarding components degrades the quality of the recon-
structed audio sample. If the discard threshold is too high,
neither the human listener nor the model will be able to
correctly interpret the reconstructed audio. On the other hand,
by setting it too low, both the human listener and the model
will correctly understand the reconstructed audio.

To compensate for these competing tensions, the attack
algorithm executes the following steps. If the model output
matches the original label, during the measurement step, the
algorithm will increase the threshold value. It will then pass
the audio sample and the updated threshold back to the
thresholding step for an additional round of optimization.
However, if the model outputs an incorrect interpretation of
the audio sample, the algorithm reduces the degradation by
reducing the discard threshold, before returning the audio to
the thresholding step. This loop will repeat until the algorithm
has calculated the optimum discard threshold.
C. Performance

In order to find the optimal threshold, we incrementally
remove more components until the model fails to properly
transcribe the audio file. This process takes O(n) queries to the
model, where n is the number of decomposition components.
We can reduce the time complexity from linear to logarithmic
time such that an attack audio is produced in O(log n) queries.
To achieve this, we model the distortion search as a binary
search (BS) problem where values represent the number of
coefficients to use during reconstruction.

If the reconstruction is misclassified, we move to the left
BS search-space and attempt to improve the audio quality by

removing less coefficients. If the audio is correctly transcribed,
we move to the right. This search continues until either an
upper bound on the search depth is reached. This result was
sufficient for the scope of this paper, and we leave a more
rigorous analysis of distortion search complexity for future
work.

D. Transferability

One measure of an attack’s strength is the ability to gener-
ate adversarial examples that are transferable to other models
(i.e., a single audio sample that is mistranscribed/misidentified
by multiple models). An attacker will not know the precise
model he is trying to fool. In such a scenario, the attacker
will generate examples for a known model, and hope that the
samples will work against a completely different model.

Attacks have been shown to generalize between models
in the image domain [59]. In contrast, attack audio trans-
ferability has only has seen limited success. Additionally,
audio generated with previous approaches ([28], [30]) are
sensitive to naturally occurring external noise, which fails to
exploit the target model in a real-world setting. This is in
line with previous results of physical attacks in the image
domain [52]. Instead we focus on the evasion style of attack,
where the attack is considered successful if the ASR system
transcribes the attack audio incorrectly or the AVI misidentifies
the speaker of the attack audio. We propose a completely
black-box approach that does not consider model specifics as
a means of bypassing these limitations.

E. Detection and Defense

We evaluate our attack against the adversarial audio detec-
tion mechanism which is based on temporal dependencies [82].
This is the only method designed specifically to detect ad-
versarial audio samples. This method has demonstrated excel-
lent results: it is light-weight, simple and highly effective at
detecting tradition adversarial attacks. The mechanism takes
as input an audio sample. This can either be adversarial or
benign. Next, the audio sample is partitioned into two. Only
the partition corresponding to the first half is retained. Next,
the entire original audio sample and the first partition are
passed to the model and the transcriptions are recorded. If the
transcriptions are similar, then the audio sample is considered
benign. However, if the transcriptions are differing, the audio
sample is adversarial. This is because adversarial attack algo-
rithms against audio samples distort the temporal dependence
within the original sequences. The temporal dependency-based
detection is designed to capture this information and use it for
attack audio detection.

Additionally, we evaluate our attack against adversarial
training based defense. However, we have placed the steps,
the methodology, and the results in the Appendix C.

IV. SETUP

Our experimental setup involved two datasets, four attack
scenarios, two test environments, seven target models, and a
user study. We discuss the relevant details of our experiments
here.

5

A. TIMIT Data Set

The TIMIT corpus is a standard dataset for speech pro-
cessing systems. It consists of 10 English sentences that are
phonetically diverse being spoken by 630 male and female
speakers [35]. Additionally, there is metadata of each speaker
that includes the speaker’s dialect. In our tests, we randomly
sampled six speakers, three male and three female, from each
of four regions (New England, Northern, North Midland, and
South Midland). We then perturbed all 10 sentences spoken by
our speakers using our technique, and also extracted phonemes
for our phoneme-level experiments. In total, we attacked 240
recordings with 7600 phonemes.

B. Word Audio Data Set

Testing the word-level robustness of an ML model poses
challenges in terms of experimental design. Although there
exist well-researched datasets of spoken phrases for speech
transcription [58], [11], partitioning the phrases into individual
words based on noise threshold is not ideal. In this case,
the only way to control the distribution of candidate phrases
would be to pass them to a strong transcription model, while
discarding audio samples which are mistranscribed. Doing so
may bias the candidate attack samples towards clean, easy to
understand samples. Instead, we build a word-level candidate
dataset using a public repository of the 1,000 most common
words in the English language [1]. We then download audio
for each of the 1,000 words using the Shotooka spoken-word
service [9].

C. Attack Scenarios

In order to test our technique in a variety of different ways,
we performed four attacks: word level, phoneme level, ASR
Poisoning, and AVI poisoning. We also tested the transferabil-
ity of the attack audio samples across models.

1) Word Level Perturbations: Using the 1,000 most
common words, we performed our attack as described in
Section III-B. We optimized our threshold using the technique
outlined in Section III-D, stopping either after the threshold
value had converged or after a maximum of 15 queries.

2) Phoneme Level Perturbations: Next, we ran perturba-
tions on individual phonemes rather than entire words. The
goal of this attack was to cause mistranscription of an entire
word by only perturbing a single phoneme. We tested this
attack on audio files from the TIMIT corpus and replaced
the regular phoneme with its perturbed version in the audio
file. The audio sample was then passed to the ASR system
for transcription. We repeated this process for every phoneme
using the binary search technique outlined in Section III-D.

3) ASR Poisoning: ASR systems often use the previously
transcribed words to infer the transcription of the next [31],
[63], [21]. Perturbing a single word’s phonemes not only
affects the model’s ability to transcribe that word, but also
the words that come after it. We wished to measure the effect
of perturbing a single phoneme on the transcription of the
remaining words in a sentence. To do this, we generated
adversarial audio sample by perturbing a single phoneme
while keeping the remaining audio intact for the sentences
of the TIMIT dataset. We repeated this for every phoneme

in the dataset and passed the attack audio samples to the
ASR system. The cosine similarity metric was used to measure
the transcription similarity between the attack audio with the
original audio.

When perturbing phonemes, we do not use the attack
optimization described in Section III-D. Since the average
length of a phoneme in our dataset was only 31ms, a single
perturbed phoneme in a sentence does not significantly impact
audio comprehension. Therefore, we simply discard half of all
decomposition coefficients in a single 31 ms window during
the thresholding step. This maintains the quality of the adver-
sarial audio, while still forcing the model to mistranscribe.

4) AVI Poisoning: We also evaluate our attacks’ perfor-
mance against AVI system. To do so, we first trained an Azure
Speaker Identification model [2] to recognize 20 speakers. We
selected 10 male and 10 female speakers from the TIMIT
dataset to service as our subjects. For each speaker, seven
sentences were used for training, while the remaining three
sentences were used for attack evaluation. We only perturbed a
single phoneme while the rest of the sentence is left unaltered.
We passed both the benign and adversarial audio samples to the
model. The attack was considered a success if the AVI model
output different labels for each sample. This attack setup is
similar to the one for ASR poisoning, except that here we
target an AVI system.

D. Models

We choose a set of seven models that are representative
of the state-of-the-art in ASR and AVI technology, given their
high accuracy [15], [14], [5], [33]. These include a mixture of
both proprietary and open-source models to expose the utility
of our attack. However, all are treated as black-box.

Google (Normal): To demonstrate our attack in a truly black-
box scenario, we target the speech transcription APIs provided
by Google. The ‘Normal’ model is provided by Google for
‘clean’ use cases, such as in home assistants, where the speech
is not expected to traverse a cellular network [4].

Google (Phone): To demonstrate our attack against model
trained for noisy audio, we test the attack against the ‘Phone’
model. Google provides this model for cellular use cases and
trained it on call audio that will be representative of cellular
network compression [12]. We also assume that the Google
‘Phone’ model will be robust against the noise, jitter, loss and
compression introduced to audio samples that have traveled
through the telephony network.

Facebook Wit: To ensure better coverage across the space
of proprietary speech transcription services, we also target
Facebook Wit, which provides access to a ‘clean’ speech
transcription model [16]. As before, no information is known
about this model due to its proprietary nature.

Deep Speech-1: The goal of Deep Speech 1 was to eliminate
hand-crafted feature pipelines by leveraging a paradigm known
as end-to-end learning [39], [41]. This results in robust speech
transcription despite noisy environments, if sufficient training
data is provided. For our experiments, we use an open-
source implementation and checkpoint provided by Mozilla
with MFCC features [7].

6

Deep Speech-2: Deep Speech-2 introduced architecture op-
timizations for very large training sets. It is trained to map
raw audio spectrograms to their correct transcriptions, and
demonstrates the current state-of-the-art in noisy, end-to-
end audio transcription [20]. We use an open-source imple-
mentation2 trained on LibriSpeech provided by GitHub user
SeanNaren [58], [56]. The primary difference in our two tested
versions is feature preprocessing: the tested version of Deep
Speech-1 uses MFCC features, while the tested version of
Deep Speech-2 uses raw audio spectrograms.

CMU Sphinx: The CMU Sphinx project is an open-source
speech transcription repository representing over twenty years
of research in this task [50]. Sphinx does not heavily rely
on deep learning techniques, and instead implements a com-
bination of statistical methods to model speech transcription
and high-level language concepts. We use the PocketSphinx
implementation and checkpoints provided by the CMU Sphinx
repository [50].

Microsoft Azure: To demonstrate our attack against AVI
systems in a black-box environment, we attack the Speaker
Identification API provided by Microsoft Azure [2]. This
system is proprietary, and hence, completely black-box. There
is no publicly available information about the internals of the
system.

Although the landscape of audio models is ever-changing,
we believe our selection represents an accurate approximation
of both traditional and state-of-the-art methods. Intuitively,
future models will derive from the existing state-of-the-art in
terms of data and implementation. We also compare against
open-source and proprietary models, to show our approach
generalizes to any model regardless of a lack in apriori
knowledge.

E. Transferability

We measure the transferability of our proposed attack by
finding the probability that the attack samples for one model
will successfully exploit another. This is done by creating a
set of successful word-level attack audio samples X∗m for a
model m, then averaging their calculated Mean Squared Error
(MSE) distortion, MSEm. Intuitively, this average MSE will
be higher for stronger models, and lower for weaker models.
This acts as a ‘hardness score’ for a given model and is
used to compare between attack audio sets of two models.
Now consider a baseline model f , comparison model g, the
successful attack transfer event Sf→g , and the number of audio
samples in each model’s attack audio set n = |X∗f | = |X∗g |.
We can calculate attack transfer probability from f to g as
the probability of sampling attack audio from X∗f whose
distortion meets or surpasses the score MSEg . We denote this
probability P (Sf→g) and the set of potentially transferable
audio samples as Vf→g . We calculate the probability using
the equation P (Sf→g) =

|Vf→g|
n , where we build the set of

transferable attack samples such that Vf→g = {x∗f,i ∈ X∗f :

MSE(x∗f,i) ≥MSEg}.
Thus, we approximate the probability of sampling a piece

of audio which meets the ‘hardness’ of model g from the set

2At the time of running our experiments, the implementation did not include
a language model to aid in the beam-search decoding.

which was successful over model f . This value is calculated
across each combination of models in our experiments for SSA
and DFT transforms, with n set to 1,000 as a result of using
our Word Audio data set.

F. Detection

Our experimental method was designed to be as close
to that of the authors [82]. We assume that the attacker is
not aware of the existence of the defense mechanism or the
size of the partition. Therefore, we perturbed the entire audio
sample using our attack, to maximally distort the temporal
dependencies. Next, we partitioned the audio sample into two
halves. We passed both the entire audio sample and the first
half to the Google Speech API for transcription. We conducted
this experiment with 266 adversarial audio samples generated
using the DFT perturbation method at a factor of 0.07. Our
set of benign audio samples consisted of 534 benign audio
samples. The audio samples for both the benign and adversarial
sets were taken from the TIMIT dataset. Similar to the authors,
we use Word Error Rate (WER) as a measure of transcription
similarity. In line with the authors, we calculate and report the
Area Under Curve (AUC) value. AUC values lie between 0.5
and 1. A perfect detector will return an AUC of 1, while a
detector that randomly guesses returns an AUC of 0.5.

G. Over-Cellular

The Over-Cellular environment simulates a more realistic
scenario where an adversary’s attack samples have to travel
through a noisy and lossy channel before reaching the target
system. Additionally, this environment accurately models one
of the most common mediums used for transporting human
voice – the telephony network. In our case, we did this by
sending the audio through AT&T’s LTE network and the
Internet via Twilio [13] to an iPhone 6. The attacker’s audio
is likely to be distorted while passing through the cellular
network due to jitter, packet loss, and the various codecs
used within the network. The intuition for testing in this
environment is to ensure that our attacks are robust against
these kinds of distortions.

H. MTurk Study Design

In order to measure comprehension of perturbed phone
call audio, we conducted an IRB approved online study. We
ran our study using Amazon’s Mechanical Turk (MTurk)
crowdsourcing platform. All participants were between the
ages of 18 and 55 years old, located in the United States,
and had an approval rating for task completion of more than
95%. During our study, each participant was asked to listen
to audio samples over the phone. Parts of the audio sample
had been perturbed, while others had been left unaltered3.
The audio samples were delivered via an automated phone
call to each of our participants. The participants were asked
to transcribe the audio of a pre-recorded conversation that was
approximately one minute long. After the phone call was done,
participants answered several demographic questions which
concluded the study. We paid participants $2.00 for completing
the task. Participants were not primed about the perturbation of

3We invite the readers to listen to the perturbed audio samples for them-
selves: https://sites.google.com/view/transcript-evasion

7

0

20

40

60

80

100

Su
cc

es
sf

ul
 T

ra
ns

cr
ip

tio
ns

(%
) DFT Attack

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175
Mean Squared Error Between Original and Attack Audio

0

20

40

60

80

100

Su
cc

es
sf

ul
 T

ra
ns

cr
ip

tio
ns

(%
) SSA Attack

Sphinx
DeepSpeech-1
Wit
Google (Normal)
Google (Phone)

Fig. 4: Success transcriptions against our word-level attack
plotted against increasing distortion, calculated using Mean
Square Error (MSE). The SSA-based word-level attack sees
a faster, sharper decrease in the successful transcriptions than
the DFT-based word-level attack, noted by its ability to reach
50% attack success (solid black line) across all models within
a smaller span of distortion. This means 50% of the words
in the dataset were mistrascribed by the target ASR. In every
case, the test set accuracy falls considerably before reaching
the GSM baseline distortion (dashed red line).

the pre-recorded audio, which prevented introducing any bias
during transcription. In order to make our study statistically
sound, we ran a sample size calculation under the assumption
of following parameter values: an effect size of 0.05, type-I
error rate of 0.01, and statistical power of 0.8. Under these
given values, our sample size was calculated to be 51 and we
ended up recruiting 89 participants in MTurk. Among these
89, 23 participants started but did not complete the study
and 5 participants had taken the study twice. After discarding
duplicate and incomplete data, our final sample size consists
of 61 participants.

V. RESULTS

As outlined previously in Section IV-C, we evaluated our
attack in various different configurations in order to highlight
certain properties of the attack. To begin, we will evaluate our
attack against the speech to text capabilities of multiple ASR
systems in several different setups.

A. Attacks Against ASR systems

1) Word Level Perturbations: We study the effect of our
word-level attack against each model. We measure attack
success against distortion and compare the DFT and the SSA
attacks, shown in Figure 4. In this subsection, we discuss
five target models: Google (Normal), Google (Phone), Wit,
DeepSpeech-1 and Sphinx. Distortion is calculated using the

MSE between every normal audio sample and its adversarial
counterpart.

We use the GSM audio codec’s average MSE as a baseline
for audio comprehension, as it is used by 2G cellular networks
(the most common globally). We denote this baseline with
the red, vertical dashed line in Figure 4. Thus, we consider
any audio with higher MSE than the baseline to be totally
incomprehensible to humans. It is important to note that this
assumption is extremely conservative, since normal compre-
hensible phone call audio often has larger MSE than our
baseline.

Figure 4 shows that as distortion is iteratively increased
using the word-level attack, test set accuracy begins to diminish
across all models and all transforms. Models which decrease
slower, such as Google (Phone), indicate a higher robustness to
our attack. In contrast, weaker models, such as Deep Speech-
1, exhibit a sharper decline. For all transforms, the Google
(Phone) model outperforms the Google (Normal) model. This
indicates that training the Google (Phone) model on noisy
audio data exhibits a rudimentary form of adversarial training.
However, all attacks are eventually successful to at least 85%
while retaining audio quality that is comprehensible to humans.

Despite implementing more traditional machine learn-
ing techniques, Sphinx exhibits more robustness than Deep
Speech-1 across both attacks. This indicates that Deep Speech-
1 may be overfitting across certain words or phrases, and its
existing architecture is not appropriate for publicly available
training data. Due to the black-box nature of Wit and the
Google models, it is difficult to compare them directly to
their white-box counterparts. Overall, Sphinx is able to match
Wit’s performance, which is also more robust than the Google
(Normal) model in the DFT attack.

Surprisingly, for the SSA attack Sphinx is able to outper-
form all models as distortion approaches the human percep-
tibility baseline. This may be a byproduct of the handcrafted
features and models built into Sphinx. Overall, the SSA-based
attack manages to induce less distortion, allowing all models
to fail with 50% (represented by the horizontal black line) or
less test set accuracy before 0.0100 calculated MSE. Manual
listening tested showed that there was no perceivable drop in
audio quality at this MSE.

2) Phoneme Perturbations: Our evaluation of the phoneme
level attacks exposed several trends, as shown in Figures 5
and 12. For brevity, only Google (Normal) and Wit are shown
across each data transform, with complete charts available in
Section D of the Appendix.

Figure 5 shows the relationship between phonemes and
attack success. Lower bars correspond to a greater percentage
of attack examples that were incorrectly transcribed by the
model. According to the figure, vowels are more sensitive to
perturbations than other phonemes. This pattern was consis-
tently present across all the models we evaluated. There are
a few possible explanations for this behavior. Vowels are the
most common phonemes in the English language and their
formant frequencies are highly structured. It is possible these
two aspects in tandem force the ASR system to over-fit to the
specific formant pattern during learning. This would explain
why vowel perturbations cause the model to mistranscribe.

8

en
g ow aw ae ey uw ux sh ao aa uh ay er em en ih oy ah eh ax
r iy ch w

ax
-h ax ng
r ix hh m y z s jh t l v n g th k hv
f el p d dx dh b nx zh

Phonemes

0

20

40

60

80

100

At
ta

ck
 S

uc
ce

ss
 (%

) Google (Normal)

b ch zh ng em en en
g hh hv ih ae aa aw ay ah ow uh uw ux er ax
r

ax
-h n iy eh ao g sh v t z m l
ax w ey p ix r el s k nx y dx

f
oy jh d dh th

Phonemes

At
ta

ck
 S

uc
ce

ss
 (%

) Wit
Stops
Affricates
Fricatives
Nasals
Semivowels_and_Glides
Vowels

Fig. 5: A comparison of attack success of our DFT-based phoneme-level attack against two ASR models. There is a clear
relationship between the which phoneme is attacked and the attack’s success. It is clear across all models that we evaluated that
vowels are more vulnerable to this attack than other phonemes.

Similarly, Figure 12 shows the distortion thresholds needed
for each phoneme to cause mistranscription of a phrase. The
longer the bar, the greater the required threshold. For the DFT-
based attack experiment, shown in Figure 12(a), we observe
that the vowels require a lower threshold compared to the
other phonemes. This means that less distortion is required
for a vowel to trick the ASR system. In contrast, the SSA-
based attack experiments, as shown in Figure 12(b), reveal
that all of the phonemes are equally vulnerable. In general,
the SSA attacks required a higher threshold than our previous
DFT attack. However, the MSE of the audio file after being
perturbed when compared to the original audio is still small.
The average MSE during these tests was 0.0067, which is an
order of magnitude less than the MSE of audio being sent over
LTE (0.0181).

Our SSA attacks did not appear to expose any systemic
vulnerability in our models as the DFTs did. There exist two
likely causes for this: DFT’s use in ASR feature extraction and
SSA’s data dependence. ASR systems often use DFTs as part
of their feature extraction mechanisms, and thus the models
are likely learning some characteristics that are dependent on
the DFT. When our attack alters the DFT, we are directly
altering acoustic characteristics that will affect which features
the model is extracting and learning.

Additionally, when SSA is used in our attack, we are
removing eigenvectors rather than specific frequencies like we
do with a DFT. These eigenvectors are made up of multiple
frequencies that are not unique to any one eigenvector. Thus,
the removal of an eigenvector does not guarantee the complete
removal of a given frequency from the original audio sample.
We believe the combination of these two factors results in our
SSA-based attack being equally effective against all phonemes.

Both Figures 5 and 12 provide information for an attacker
to maximize their attack success probability. Perturbing vowels
at a 0.5 threshold while using a DFT-based attack will provide
the highest probability for success because vowels are vul-
nerable across all models. Even though the discard threshold
applied to vowels might vary from one model to another,
choosing a threshold value of 0.5 can guarantee both stealth
and a high likelihood of a successful mistranscription.

3) ASR Poisoning: As described in Section IV-C2, per-
turbing a single phoneme not only causes a mistranscription
of the given word but also of the following words as well.
Results of this phenomena can be seen in Table ??. We
further, characterize this numerically across each model for the

Fig. 6: Cosine similarity between the transcriptions of the
original and the perturbed audio file. At a value of 0.5
(horizontal line) half of the sentence is incorrect. Attack audio
samples were generated by perturbing a single phoneme.

DFT-based attack in Figure 6, where higher values of cosine
similarity translate to lower attack mistranscription.

We observe a relationship between the model type and
the cosine similarity score. Of all the models tested, Wit is
the most vulnerable, given low average cosine similarity of
0.36. On the other hand, the Google (Normal) model seems
to be least vulnerable with the highest cosine similarity of
0.78. To better characterize the phenomenon, we use the cosine
similarity value to estimate the number of words that the attack
effects. We do so by assuming a sentence comprised of 10
words each. Perturbing a single phoneme can force Wit to
mistranscribe the next seven words. In contrast, only two of the
next 10 words will be mistranscribed by the Google (Normal)
model. This robustness for the Google (Normal) model might
be due to its internal recurrent layers being less weighted
towards the previously transcribed content. It is also interesting
to note that, despite their common internal structure, Deep
Speech-1 and Deep Speech-2 are significantly different in their
vulnerability to this effect. Deep Speech-1 and Deep Speech-2
have a cosine similarity score of 0.4 and 0.7, respectively. This
difference could potentially be attributed to different feature
extraction mechanisms. While Deep Speech-1 uses MFCCs,
its counterpart uses a CNN feature extraction. This is because
feature extraction using MFCCs and CNNs produce varying
results and might capture divergent information about the
signal.

Observing the models individually, there is no observable
relationship between the cosine similarity and the phoneme

9

Model Original Transcription Attack Transcription

Google (Normal) The emperor had a mean Temper syempre Hanuman Temple
then the chOreographer must arbitrate Democrat ographer must arbitrate

Wit she had your dark suit in Greasy wash water all year nope
masquerade parties tax one’S imagination stop

By only perturbing a single phoneme (bold faced and underlined), our attack forces ASR systems to completely mistranscribe the resulting audio.

To (g)

P (Sf→g)
Google
(Phone)

Google
(Normal) Wit Sphinx Deep-Speech 1

Google
(Phone) 100% 78% 83% 42% 87%

Google
(Normal) 13% 100% 65% 22% 70%

From
(f) Wit 6% 10% 100% 14% 52%

Sphinx 21% 74% 81% 100% 80%

Deep-Speech 1 3% 7% 31% 12% 100%

TABLE I: The probability of transferability P (Sf→g) calcu-
lated for each combination of the tested models. Only ‘harder’
models tend to transfer well to weaker models. The elements in
bold show the highest transferability successes. Model names
in the columns have been arranged in descending order of their
strength from harder to weaker.

type. All phonemes seem to be approximately equally vulner-
able to the attack. This means that models do not use knowl-
edge of previously occurring phonemes when transcribing the
current word. In fact, the results above show that the models
use the current phonemes and previous words in combination
to transcribe the current word, which intuitively is the intention
behind modern ASR system design.
B. Attacks Against AVI systems

Next, we observe our attacks’ effectiveness inducing errors
an AVI system. Figure 7 shows the attack success rate per
vowel for both SSA and DFT attacks. Similar to our attack
results against ASR models, attacks against the AVI system
exhibited higher success rate when attacking phoneme. This
means an adversary wishing to maximize attack success should
focus on perturbing vowels. Figure 11 shows the relative
amount of perturbation necessary in order to force an AVI
misclassification. The SSA attack requires a relatively high
perturbation for every phoneme. In contrast, the DFT attack
requires a smaller degree of perturbation, all except some
vowels. This implies that the DFT attack could be conducted
more stealthily by intelligently selecting certain phonemes. The
perturbation required, the more stealthy the attack. However,
because the SSA attack requires larger degree of perturbations
for most phonemes, the level of stealth the attack can achieve
is relatively higher.

C. Transferability

Table I shows results of the transferability experiments
using the SSA-based attack. Overall, the attack has the highest
transfer probability when a ‘harder’ model is used to generate
attack audio samples. The Google (Phone) model had the
highest average threshold across samples which, as discussed
in Section IV-E, translated to the highest transfer probability.
In contrast, a weaker model will have a lower threshold and
thus be less likely to transfer. This can be seen when treating
Sphinx as the baseline model in Table I. The table shows that
in the worst case attack audio generated for the Google (Phone)
the model will also be effective against any other model at least

42% of the time. This ensures a high probability of success
even in the extreme case when the adversary does not know
which model the victim will be employing. By generating
attack samples on a stronger model, an adversary can expect an
attack to transfer well as long as the victim model is weaker.
Finding a weaker model is trivial. As long as the adversary
has sufficient queries, they can compare transcription rates for
a candidate audio sample between the two models.

D. Detection

For the detection experiments, we created set of 266
adversarial samples, perturbed using the DFT technique, while
the benign set consisted of 534 unperturbed audio samples. Of
the adversarial samples provided to the Google Speech API,
20% did not produce any transcription. This was true both the
entire audio samples and their corresponding partition. This
means that the WER for these samples was 0, which introduced
a bias to our results. Though this is perfect for the dissident,
but it introduces bias in our results. Specifically, because there
are two benign cases in which the WER will be zero, benign
audio or very noisy audio. We discarded these audio samples
from our adversarial set to remove this bias in our results. In
the real world, an attacker can merely reduce the attack factor
to prevent the model from producing no transcription. Next,
we calculated the AUC scores for the samples. In our case,
the AUC value was 0.527, which is far lower than the AUC
value of 0.936 reported by the authors for the attacks they
tested. This means even though the temporal based detection
can do an excellent job of detecting other attacks, it is highly
inaccurate for detecting our attack samples.

E. Per-Layer Effects

We now probe more deeply into why the attacks succeed.
In particular, we will explore the attacks’ effects at each layer
of a typical deep learning-based speech transcription model.
We begin by opening our local deployment of Deep Speech-
2, which represents a state-of-the-art architecture in this task.
The model was provided by an open-source community and
was not trained on the same breadth of data as the original
proposal [20]. However, examining such a deployment gives
insight into the attack’s effects on a publicly available, open-
source implementation. We begin by recording the activations
at each layer of the Deep Speech-2 architecture for several
pairs of original and word-level perturbed audio sample.

We treat the activation of the original audio as a baseline
and subtract this from the activation of the perturbed audio to
find the net effect. We quantify their distance using the L2-
norm, then divide this value by the L2-norm of the original
activation. In total, the tested implementation is comprised
of thirteen logical layers4, thus for every normal audio x,

4We treat the combination of convolutional, pooling, and activation layers
as one logical convolution layer. For recurrent layers, we treat the BatchNorm-
RNN [20] as one logical recurrent layer.

10

t d w iy ow jh aw hh ng uw uh ay m k p oy hv ix ey th ux sh eh
l

dx ae g n z ax r ah s ih ax
r v er y b aa dh

ax
-h ao el nx en em

f zh ch

Phonemes

0

10

20

30

At
ta

ck
 S

uc
ce

ss
 (%

) Azure DFT Attack

oy ng
t ae iy er ey ux ow ay eh ix w sh jh k l

aw aa d
ax

r r
uw uh m n dx el p en th s g z ax ih ah y ao hv dh v b

ax
-h hh nx em

f zh ch

Phonemes

Azure SSA Attack
Stops
Affricates
Fricatives
Nasals
Semivowels_and_Glides
Vowels

Fig. 7: Success rate of our attack against a Automatic Voice Identification (AVI) system. When perturbing a single phoneme
in the entire audio sample, an adversary has a greater chance of succeeding with an SSA attack rather than a DFT attack.
Additionally, similar to the observation in Figure 5 vowels are more vulnerable than other phonemes.

Con
v.0

Con
v.1

Con
v.2

Con
v.3

Con
v.4

Con
v.5

RNN.0
RNN.1

RNN.2
RNN.3

RNN.4 FC

So
ftm

ax

Logical Layer

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e

Ch
an

ge
 (L

2
No

rm
)

Relative Change of L2 Norm per Layer

Fig. 8: Calculated net change ∆hl for each layer in the
tested Deep Speech 2 model (Convolutional, Recurrent (RNN),
fully connected (FC), and Softmax). Lower-level convolutional
layers tend to have higher adversarial effect than upper-level
recurrent and fully connected layers.

adversarial audio x∗, layer hl, l ∈ {0, ..., 13}, and the L2-
norm written for brevity as L2, we have the layer’s net change
∆hl calculated using the equation ∆hl = L2[h

l(x)−hl(x∗)]
L2[hl(x)]

.

This process was repeated for every benign-perturbed audio
pair in our corpus, which is the same corpus built for the word-
level perturbation experiments in Section IV-C1. We average
across every pair, then repeat this process for every logical
layer hl in the Deep Speech-2 architecture to produce the
results shown in Figure 8. We observe a higher rate of change
for low-level convolutional layers, particularly the upper-level
convolutional layers. These convolutional layers learn to mimic
and surpass the MFCC preprocessing filter. The net change
immediately diminishes as the sample passes through the re-
current layers, reflecting the intuition that changes at individual
frames, phonemes, or words may be mitigated by temporal
information. However, we also observe a non-zero net change
in the fully connected and softmax layers, indicating that the
shift was enough to force mistranscription. This points to the
CNNs as the main source of the attack vulnerability.

F. Over-Cellular

Next, we test our attacks for use over a cellular network.
We run previously successful attack audio samples over the
cellular network before passing them again to the target
models. The rate of success for this experiment is shown in
Figure 9 plotted against the DFT and SSA-based attacks for
each model. If our attack were to be used over a cellular
connection, having near real-time performance is important.
The largest source of potential delay caused by our attack is

Fig. 9: The attack audio was sent over the cellular network
and recorded on a mobile end-point. The figure above shows
the percentage of the attack audio that was still mistranscribed
even after being passed over the cellular network.

from calculating the DFT on the original audio sample. While
we do not conduct our own time evaluation, Danielsson et
al. showed that calculating a DFT on a commodity Android
platform took approximately 0.5 ms for a block size of 4096
[33].

The DFT-based attack managed to be more successful
across the mobile network than the SSA-based attack and
was only consistently filtered by the Deep Speech and Wit
models. Overall, the models react differently based on the
transformation. Wit performs best under DFT transforms and
worst under SSA transforms, while the opposite is true for
Deep Speech 1 and Google (Normal) model. Sphinx is equally
vulnerable to both transformation methods.

An intuition for these results can be formed by considering
the task each transformation is performing. When transforming
with the DFT, the attack audio sample forms around pieces of
weighted cross-correlations from the original audio sample. In
contrast, the SSA is built as a sum of interpretable principal
components. Although SSA may be able to produce fine-
grained perturbations to the signal, the granularity of per-
turbations is lost during the mobile network’s compression.
This effect is expected to be amplified for higher amounts
of compression, although such a scenario also limits the
perceptibility of benign audio.

G. Amazon Turk Listening Tests

In order to evaluate the transcription done by MTurk
workers, we initially manually classified the transcriptions as
either correct or incorrect. Table II shows a side by side

11

Original Transcription Attack Transcription
How are you?
How’s work going?

How are you
posmothdro?

I am really sorry
to hear that.

I am relief for you
to hear that.

TABLE II: Example of the attacked audio which was played
to MTurk Workers and the corresponding transcriptions.

Accuracy (Perturbed) Accuracy (Benign)
Male Female Male Female

91.8%
(56/61)

100%
(61/61)

98.36%
(60/61)

98.36%
(60/61)

TABLE III: Transcription accuracy results of MTurk workers
for benign and perturbed audios between Male and Female
speakers.

comparison of original and attack transcription of the perturbed
portion of the audio sample. Transcriptions which had either
a missing word, a missing sentence, or an additional word not
present in the audio were marked as incorrect. At the end of
this classification task, the inter-rater agreement value, Cohen’s
kappa was found to be 0.901, which is generally considered to
be ‘very good’ agreement among individual raters. Our manual
evaluation found only 11% of the transcriptions to be incorrect.
More specifically, we found that incorrect transcriptions mostly
had missing sentences from the beginning of the played audio
sample, but the transcriptions did not contain any misinter-
preted words. Our subjective evaluation did not consider wrong
transcription of perturbed vs. non-perturbed portion of the
audio, rather we only evaluated human comprehension of the
audio sample.

In addition to subjective evaluation, we ran a phoneme-
level edit distance test on transcriptions to compare the
level of transcription accuracy between perturbed and non-
perturbed audio samples. We used this formula for phoneme
edit distance, φ: φ = δ

L , where δ is the Levenshtein edit
distance between phonemes of two transcriptions (original
transcription and MTurk worker’s transcription) for a word and
L is the phoneme length of non-perturbed, normal audio for the
word [28]. We defined accuracy as 1 when φ = 0, indicating
exact match between two transcriptions. For any other value
φ > 0, we defined it as ‘in-accuracy’ and assigned a value of 0.
In Table III, we present transcription accuracy results between
perturbed and non-perturbed audio across our final sample size
of 61. We also ran a paired sample t-test, using the individual
accuracy score for perturbed and benign audio transcriptions,
with the null hypothesis that participants’ accuracy levels were
similar for both cases of transcriptions. Our results showed
participants had better accuracy transcribing non-perturbed
audio samples (mean = 0.98, SD = 0.13) than for perturbed
audio (mean = 0.90, SD = 0.30). At a significance level of
p < 0.01, our repeated-measures t-test found this difference
not to be significant, t(60) = −2.315, p = 0.024. Recall that
our chosen significance level (p < 0.01) was not arbitrary,
rather it was chosen during our sample size calculation for
this study. Together, this suggests that our word level audio
perturbation create no obstacle for human comprehension in
telecommunication tasks, thus supporting our null hypothesis.

VI. DISCUSSION

A. Phoneme vs. Word Level Perturbation

Our attack aims to force a mistranscription while still
being indistinguishable from the original audio to a human
listener. Our results indicate that at both the phoneme-level
and the word-level, the attack is able to fool black-box models
while keeping audio quality intact. However, the choice of
performing word-level or phoneme-level attacks is dependent
on factors such as attack success guarantee, audible distortion,
and speed. The adversary can achieve guaranteed attack suc-
cess for any word in the dictionary if word-level perturbations
are used. However, this is not always true for a phoneme-
level perturbation, particularly for phonemes which are pho-
netically silent. An ASR system may still properly transcribe
the entire word even if the chosen phoneme is maximally
perturbed. Phoneme-level perturbations may introduce less
human-audible distortion to the entire word, as the human
brain is well suited to interpolate speech and can compensate
for a single perturbed phoneme. In terms of speed, creating
word-level perturbations is significantly slower than creating
phoneme-level perturbations. This is because a phoneme-level
attack requires perturbing only a fraction of the audio samples
needed when attacking an entire word.

B. Steps to Maximize Attack Success

An adversary wishing to launch an Over-Cellular evasion
attack on an ASR system would be best off using the DFT-
based phoneme-level attack on vowels, as it guarantees a high
level of attack success. Our transferability results show that an
attacker can generate samples for a known ‘hard’ model such
as Google (Phone) and have reasonable confidence that the
attack audio will transfer to an unknown ASR model. From
our ASR poisoning results, we observe that an adversary does
not have to perturb every word to earn 100% mistranscription
of the utterance. Instead, the attacker can perturb a vowel
of every other word in the worst case, and every fifth word
in the best case. The ASR poisoning effect will ensure that
the non-perturbed words are also mistranscribed. Finally, the
attack audio samples have a high probability of surviving
the compression of a cellular network, which will enable the
success of our attack over lossy and noisy mediums.

Contrary to an ASR system attack, an adversary looking
to execute an evasion attack on an AVI system would prefer
to use the SSA-based phoneme-level attack. Similar to ASR
poisoning, we observe that an adversary does not have to
perturb the entire sentence to cause a misidentification, but
rather just a single phoneme of a word in the sentence. Based
on our results, the attacker would need to perturb on average
one phoneme every 8 words (33 phoneme) to ensure a high
likelihood of attack success. The attack audio samples are
generated in an identical manner for both the ASR and AVI
system attacks, thus the AVI attack audio should also be robust
against lossy and noisy mediums (e.g., a cellular network).

C. Why the Attack Works

Our attacks exploit the fundamental difference in how the
human brain and ASR/AVI systems process speech. Specif-
ically, our attack discards low intensity components of an
audio sample which the human brain is primed to ignore.

12

The remaining components are enough for a human listener
to correctly interpret the perturbed audio sample. On the
other hand, the ASR or AVI systems have unintentionally
learned to depend on these low intensity components for
inference. This explains why removing such insignificant parts
of speech confuses the model and causes a mistranscription
or misidentification. Additionally, this may also explain some
portion of the ASR and AVI error on regular testing data sets.
Future work may use these revelations in order to build more
robust models and be able to explain and reduce ASR and AVI
system error.

D. Audio CAPTCHAs

In addition to helping dissidents overcome mass-
surveillance, our attack has other applications as well. Specif-
ically, in the domain of audio CAPTCHAs. These are often
used by web services to validate the presence of a human.
CAPTCHAs relies on humans being able to transcribe audio
better than machines, an assumption that modern ASR systems
call into question [26], [77], [70], [73], [24]. Our attack could
potentially be used to intelligently distort audio CAPTCHAs
as a countermeasure to modern ASR systems.

VII. RELATED WORK

Machine Learning (ML) models, and in particular deep
learning models, have shown great performance advancements
in previously complex tasks, such as image classification [47],
[75], [42] and speech recognition [61], [20], [39]. However,
previous work has shown that ML models are inherently
vulnerable to a class of ML known as Adversarial Machine
Learning (AML) [43].

Early AML techniques focused on visually imperceptible
changes to an image that cause the model to incorrectly classify
the image. Such attacks target either specific pixels [49], [76],
[38], [22], [74], [54], or entire patches of pixels [25], [72],
[60], [29]. In some cases, the attack generates entirely new
images that the model would classify to an adversary’s chosen
target [57], [51].

However, the success of these attacks are a result of
two restrictive assumptions. First, the attacks assume that the
underlying target model is a form of a neural network. Second,
they assume the model can be influenced by changes at the
pixel level [60], [57]. These assumptions prevent image attacks
from being used against ASR models. ASR systems have found
success across a variety of ML architectures, from Hidden
Markov Models (HMMs) to Deep Neural Networks (DNNs).
Further, since audio data is normally preprocessed for feature
extraction before entering the statistical model, the models
initially operate at a higher level than the ‘pixel level’ of their
image counterparts.

To overcome these limitations, previous works have pro-
posed several new attacks that exploit behaviors of particular
models. These attacks can be categorized into three broad
techniques that generate audio that include: a) inaudible to
the human ear but will be detected by the speech recognition
model [84], b) noisy such that it might sound like noise to
the human, but will be correctly deciphered by the automatic
speech recognition [80], [28], [18], and c) pristine audio
such that the audio sounds normal to the human but will be

deciphered to a different, chosen phrase [83], [27], [37], [44],
[19], [46], [32], [71], [48]. Although they may seem the most
useful, attacks in the third category are limited in their success,
as they often require white-box access to the model.

Attacks against image recognition models are well studied,
giving attackers the ability to execute targeted attacks even
in black-box settings. This has not yet been possible against
speech models [23], even for untargeted attacks in a query
efficient manner. That is, both targeted and untargeted attacks
require knowledge of the model internals (such as architecture
and parameterization) and large number of queries to the
model. In contrast, we propose a query efficient black-box
attack that is able to generate an attack audio sample that
will be reliably mistranscribed by the model, regardless of
architecture or parameterization. Our attack can generate an
attack audio sample in logarithmic time, while leaving the
audio quality mostly unaffected.

VIII. CONCLUSION

Automatic speech recognition systems are playing an in-
creasingly important role in security decisions. As such, the
robustness of these systems (and the foundations upon which
they are built) must be rigorously evaluated. We perform
such an evaluation in this paper, with particular focus on
speech-transcription. By exhibiting black-box attacks against
of multiple models, we demonstrate that such systems rely on
audio features which are not critical to human comprehension
and are therefore vulnerable to mistranscription attacks when
such features are removed. We then show that such attacks can
be efficiently conducted as perturbations to certain phonemes
(e.g., vowels) that cause significantly greater misclassification
to the words that follow them. Finally, we not only demonstrate
that our attacks can work across models, but also show that the
audio generated has no impact on understandability to users.
This detail is critical, as attacks that simply obscure audio and
make it useless to everyone are not particularly useful to the
adversaries we consider. While adversarial training may help
in partial mitigations, we believe that more substantial defenses
are ultimately required to defend against these attacks.

REFERENCES

[1] “1,000 Most Common US English Words,” Last accessed in 2019,
available at https://www.ef.edu/english-resources/english-vocabulary/
top-1000-words/.

[2] “Azure speaker identification api,” Last accessed in 2019, available
at https://azure.microsoft.com/en-us/services/cognitive-servic/
speaker-recognition/.

[3] “Background on CTIAs Semi-Annual Wireless Industry Survey ,” Last
accessed in 2019, available at http://files.ctia.org/pdf/CTIA Survey
YE 2012 Graphics-FINAL.pdf.

[4] “Google Cloud Speech-to-Text API,” Last accessed in 2019, available
at https://cloud.google.com/speech-to-text/.

[5] “Googles Speech Recognition Technology Now Has a 4.9% Word Error
Rate,” Last accessed in 2019, available at https://bit.ly/2rGRtUQ.

[6] “Inside China’s Massive Surveillance Operation,” Last
accessed in 2019, available at https://www.wired.com/story/
inside-chinas-massive-surveillance-operation/.

[7] “Mozilla project deepspeech,” Last accessed in 2019, available
at https://azure.microsoft.com/en-us/services/cognitive-servic/
speaker-recognition/.

[8] “NSA Speech Recognition Snowden Searchable Text,” Last ac-
cessed in 2019, available at https://theintercept.com/2015/05/05/
nsa-speech-recognition-snowden-searchable-text/.

13

https://www.ef.edu/english-resources/english-vocabulary/top-1000-words/
https://www.ef.edu/english-resources/english-vocabulary/top-1000-words/
https://azure.microsoft.com/en-us/services/cognitive-servic/speaker-recognition/
https://azure.microsoft.com/en-us/services/cognitive-servic/speaker-recognition/
http://files.ctia.org/pdf/CTIA_Survey_YE_2012_Graphics-FINAL.pdf
http://files.ctia.org/pdf/CTIA_Survey_YE_2012_Graphics-FINAL.pdf
https://cloud.google.com/speech-to-text/
https://bit.ly/2rGRtUQ
https://www.wired.com/story/inside-chinas-massive-surveillance-operation/
https://www.wired.com/story/inside-chinas-massive-surveillance-operation/
https://azure.microsoft.com/en-us/services/cognitive-servic/speaker-recognition/
https://azure.microsoft.com/en-us/services/cognitive-servic/speaker-recognition/
https://theintercept.com/2015/05/05/nsa-speech-recognition-snowden-searchable-text/
https://theintercept.com/2015/05/05/nsa-speech-recognition-snowden-searchable-text/

[9] “Project SHTOOKA - A Multilingual Database of Audio Recordings
of Words and Sentences,” Last accessed in 2019, available at http://
shtooka.net/.

[10] “Simple Audio Recognition,” Last accessed in 2019, available at https:
//www.tensorflow.org/tutorials/sequences/audio recognition.

[11] “The CMU Audio Database (also known as AN4 database),” Last
accessed in 2019, available at http://www.speech.cs.cmu.edu/databases/
an4/.

[12] “Transcribing Phone Audio with Enhanced Models,” Last accessed
in 2019, available at https://cloud.google.com/speech-to-text/docs/
phone-model.

[13] “Twilio - Communication APIs for SMS, Voice, Video and Authenti-
cation,” Last accessed in 2019, available at https://www.twilio.com/.

[14] “Wer are we - an attempt at tracking states of the art(s) and recent
results on speech recognition,” https://github.com/syhw/wer are we,
Last accessed in 2019.

[15] “Who’s Smartest: Alexa, Siri, and or Google Now?” Last accessed in
2019, available at https://bit.ly/2ScTpX7.

[16] “Wit.ai Natural Language for Developers,” Last accessed in 2019,
available at https://wit.ai/.

[17] O. Abdel-Hamid, A.-r. Mohamed, H. Jiang, and G. Penn, “Applying
convolutional neural networks concepts to hybrid nn-hmm model for
speech recognition,” pp. 4277–4280, 05 2012.

[18] H. Abdullah, W. Garcia, C. Peeters, P. Traynor, K. Butler, and J. Wilson,
“Practical hidden voice attacks against speech and speaker recognition
systems,” Proceedings of the 2019 Network and Distributed System
Security Symposium (NDSS), 2019.

[19] M. Alzantot, B. Balaji, and M. Srivastava, “Did you hear that? adver-
sarial examples against automatic speech recognition,” arXiv preprint
arXiv:1801.00554, 2018.

[20] D. Amodei et al., “Deep speech 2 : End-to-end speech recognition in
english and mandarin,” in Proceedings of The 33rd International
Conference on Machine Learning, ser. Proceedings of Machine
Learning Research, M. F. Balcan and K. Q. Weinberger, Eds., vol. 48.
New York, New York, USA: PMLR, 20–22 Jun 2016, pp. 173–182.
[Online]. Available: http://proceedings.mlr.press/v48/amodei16.html

[21] D. Bahdanau, J. Chorowski, D. Serdyuk, P. Brakel, and Y. Bengio,
“End-to-end attention-based large vocabulary speech recognition,” in
Acoustics, Speech and Signal Processing (ICASSP), 2016 IEEE Inter-
national Conference on. IEEE, 2016, pp. 4945–4949.

[22] S. Baluja and I. Fischer, “Adversarial transformation networks: Learning
to generate adversarial examples,” arXiv preprint arXiv:1703.09387,
2017.

[23] M. K. Bispham, I. Agrafiotis, and M. Goldsmith, “A Taxonomy of
Attacks via the Speech Interface,” 2018.

[24] K. Bock, D. Patel, G. Hughey, and D. Levin, “uncaptcha: a low-resource
defeat of recaptcha’s audio challenge,” in Proceedings of the 11th
USENIX Conference on Offensive Technologies. USENIX Association,
2017, pp. 7–7.

[25] T. B. Brown, D. Mané, A. Roy, M. Abadi, and J. Gilmer, “Adversarial
patch,” arXiv preprint arXiv:1712.09665, 2017.

[26] E. Bursztein, R. Beauxis, H. Paskov, D. Perito, C. Fabry, and J. Mitchell,
“The failure of noise-based non-continuous audio captchas,” in Security
and Privacy (SP), 2011 IEEE Symposium on. IEEE, 2011, pp. 19–31.

[27] W. Cai, A. Doshi, and R. Valle, “Attacking speaker recognition with
deep generative models,” arXiv preprint arXiv:1801.02384, 2018.

[28] N. Carlini, P. Mishra, T. Vaidya, Y. Zhang, M. Sherr, C. Shields,
D. Wagner, and W. Zhou, “Hidden voice commands.” in USENIX
Security Symposium, 2016, pp. 513–530.

[29] N. Carlini and D. Wagner, “Towards evaluating the robustness of neural
networks,” in Security and Privacy (SP), 2017 IEEE Symposium on.
IEEE, 2017, pp. 39–57.

[30] N. Carlini and D. Wagner, “Audio Adversarial Examples: Targeted
Attacks on Speech-to-Text,” ArXiv e-prints, p. arXiv:1801.01944, Jan.
2018.

[31] J. K. Chorowski, D. Bahdanau, D. Serdyuk, K. Cho, and Y. Bengio,
“Attention-based models for speech recognition,” in Advances in neural
information processing systems, 2015, pp. 577–585.

[32] M. Cisse, Y. Adi, N. Neverova, and J. Keshet, “Houdini: Fooling deep
structured prediction models,” arXiv preprint arXiv:1707.05373, 2017.

[33] A. Danielsson, “Comparing android runtime with native: Fast
fourier transform on android,” 2017, mS thesis. [Online]. Available:
”https://bit.ly/2MQpUV1”

[34] E. Dohmatob, “Limitations of adversarial robustness: strong no free
lunch theorem,” arXiv preprint arXiv:1810.04065, 2018.

[35] J. S. Garofolo et al., “Getting started with the darpa timit cd-rom: An
acoustic phonetic continuous speech database,” National Institute of
Standards and Technology (NIST), Gaithersburgh, MD, vol. 107, p. 16,
1988.

[36] S. A. Gelfand, Hearing: An Introduction to Psychological and Physio-
logical Acoustics, 5th ed. Informa Healthcare, 2009.

[37] Y. Gong and C. Poellabauer, “Crafting adversarial examples for speech
paralinguistics applications,” arXiv preprint arXiv:1711.03280, 2017.

[38] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and harnessing
adversarial examples,” arXiv preprint arXiv:1412.6572, 2014.

[39] A. Graves and N. Jaitly, “Towards end-to-end speech recognition with
recurrent neural networks,” in International Conference on Machine
Learning, 2014, pp. 1764–1772.

[40] A. Graves, A.-r. Mohamed, and G. Hinton, “Speech recognition with
deep recurrent neural networks,” ICASSP, IEEE International Confer-
ence on Acoustics, Speech and Signal Processing - Proceedings, vol. 38,
03 2013.

[41] A. Hannun, C. Case, J. Casper, B. Catanzaro, G. Diamos, E. Elsen,
R. Prenger, S. Satheesh, S. Sengupta, A. Coates et al., “Deep
speech: Scaling up end-to-end speech recognition,” arXiv preprint
arXiv:1412.5567, 2014.

[42] K. He, X. Zhang, S. Ren, and J. Sun, “Deep Residual Learning
for Image Recognition,” in Proceedings of the IEEE conference on
computer vision and pattern recognition, 2016, pp. 770–778.

[43] L. Huang, A. D. Joseph, B. Nelson, B. I. Rubinstein, and J. D.
Tygar, “Adversarial machine learning,” in Proceedings of the 4th
ACM Workshop on Security and Artificial Intelligence, ser. AISec ’11.
New York, NY, USA: ACM, 2011, pp. 43–58. [Online]. Available:
http://doi.acm.org/10.1145/2046684.2046692

[44] C. Kereliuk, B. L. Sturm, and J. Larsen, “Deep learning and music
adversaries,” IEEE Transactions on Multimedia, vol. 17, no. 11, pp.
2059–2071, 2015.

[45] H. Köpcke, A. Thor, and E. Rahm, “Evaluation of entity resolution
approaches on real-world match problems,” Proceedings of the VLDB
Endowment, vol. 3, no. 1-2, pp. 484–493, 2010.

[46] F. Kreuk, Y. Adi, M. Cisse, and J. Keshet, “Fooling end-to-end speaker
verification by adversarial examples,” arXiv preprint arXiv:1801.03339,
2018.

[47] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” Neural Information Process-
ing Systems, vol. 25, 01 2012.

[48] D. Kumar, R. Paccagnella, P. Murley, E. Hennenfent, J. Mason,
A. Bates, and M. Bailey, “Skill squatting attacks on amazon alexa,”
in 27th USENIX Security Symposium (USENIX Security 18). USENIX
Association, 2018.

[49] A. Kurakin, I. Goodfellow, and S. Bengio, “Adversarial examples in the
physical world,” arXiv preprint arXiv:1607.02533, 2016.

[50] P. Lamere, P. Kwok, W. Walker, E. Gouvêa, R. Singh, B. Raj, and
P. Wolf, “Design of the cmu sphinx-4 decoder,” in Eighth European
Conference on Speech Communication and Technology, 2003.

[51] Y. Liu, S. Ma, Y. Aafer, W.-C. Lee, J. Zhai, W. Wang, and X. Zhang,
“Trojaning attack on neural networks,” Proceedings of the 2017 Network
and Distributed System Security Symposium (NDSS), 2017.

[52] J. Lu, H. Sibai, E. Fabry, and D. Forsyth, “NO Need to Worry about
Adversarial Examples in Object Detection in Autonomous Vehicles,”
ArXiv e-prints, 2017.

[53] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu, “Towards
deep learning models resistant to adversarial attacks,” arXiv preprint
arXiv:1706.06083, 2017.

[54] S. M. Moosavi Dezfooli, A. Fawzi, and P. Frossard, “Deepfool: a simple
and accurate method to fool deep neural networks,” in Proceedings of

14

http://shtooka.net/
http://shtooka.net/
https://www.tensorflow.org/tutorials/sequences/audio_recognition
https://www.tensorflow.org/tutorials/sequences/audio_recognition
http://www.speech.cs.cmu.edu/databases/an4/
http://www.speech.cs.cmu.edu/databases/an4/
https://cloud.google.com/speech-to-text/docs/phone-model
https://cloud.google.com/speech-to-text/docs/phone-model
https://www.twilio.com/
https://github.com/syhw/wer_are_we
https://bit.ly/2ScTpX7
https://wit.ai/
http://proceedings.mlr.press/v48/amodei16.html
"https://bit.ly/2MQpUV1"
http://doi.acm.org/10.1145/2046684.2046692

2016 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), no. EPFL-CONF-218057, 2016.

[55] T. N. Sainath, A.-r. Mohamed, B. Kingsbury, and B. Ramabhadran,
“Deep convolutional neural networks for lvcsr,” pp. 8614–8618, 05
2013.

[56] S. Naren, “Speech recognition using deepspeech-2,” Last accessed in
2019, available at https://github.com/SeanNaren/deepspeech.pytorch.

[57] A. Nguyen, J. Yosinski, and J. Clune, “Deep neural networks are easily
fooled: High confidence predictions for unrecognizable images,” in
Proceedings of the IEEE Conference on Computer Vision and Pattern
Recognition, 2015, pp. 427–436.

[58] V. Panayotov, G. Chen, D. Povey, and S. Khudanpur, “Librispeech: an
asr corpus based on public domain audio books,” in Acoustics, Speech
and Signal Processing (ICASSP), 2015 IEEE International Conference
on. IEEE, 2015, pp. 5206–5210.

[59] N. Papernot, P. McDaniel, I. Goodfellow, S. Jha, Z. B. Celik, and
A. Swami, “Practical Black-box Attacks Against Machine Learning,”
in Proceedings of the 2017 ACM on Asia Conference on Computer and
Communications Security. ACM, 2017, pp. 506–519.

[60] N. Papernot, P. McDaniel, S. Jha, M. Fredrikson, Z. B. Celik, and
A. Swami, “The limitations of deep learning in adversarial settings,”
in Security and Privacy (EuroS&P), 2016 IEEE European Symposium
on. IEEE, 2016, pp. 372–387.

[61] D. Povey, A. Ghoshal, G. Boulianne, L. Burget, O. Glembek, N. Goel,
M. Hannemann, P. Motlı́ček, Y. Qian, P. Schwarz, J. Silovský, G. Stem-
mer, and K. Veselý, “The kaldi speech recognition toolkit,” in IEEE
2011 Workshop on Automatic Speech Recognition and Understanding.
IEEE Signal Processing Society, 2011, iEEE Catalog No.: CFP11SRW-
USB.

[62] Y. Qin, N. Carlini, I. Goodfellow, G. Cottrell, and C. Raffel, “Imper-
ceptible, robust, and targeted adversarial examples for automatic speech
recognition,” arXiv preprint arXiv:1903.10346, 2019.

[63] L. R. Rabiner and B.-H. Juang, Fundamentals of speech recognition.
PTR Prentice Hall Englewood Cliffs, 1993, vol. 14.

[64] L. R. Rabiner and R. W. Schafer, Digital processing of speech signals.
Prentice Hall, 1978.

[65] A. W. Rix, J. G. Beerends, M. P. Hollier, and A. P. Hekstra, “Per-
ceptual evaluation of speech quality (pesq)-a new method for speech
quality assessment of telephone networks and codecs,” in 2001 IEEE
International Conference on Acoustics, Speech, and Signal Processing.
Proceedings (Cat. No. 01CH37221), vol. 2. IEEE, 2001, pp. 749–752.

[66] T. N. Sainath, O. Vinyals, A. Senior, and H. Sak, “Convolutional,
long short-term memory, fully connected deep neural networks,” in
2015 IEEE International Conference on Acoustics, Speech and Signal
Processing (ICASSP), April 2015, pp. 4580–4584.

[67] H. Sak, A. Senior, and F. Beaufays, “Long short-term memory recur-
rent neural network architectures for large scale acoustic modeling,”
Proceedings of the Annual Conference of the International Speech
Communication Association, INTERSPEECH, pp. 338–342, 01 2014.

[68] H. Sak, O. Vinyals, G. Heigold, A. Senior, E. McDermott, R. Monga,
and M. Mao, “Sequence discriminative distributed training of long
short-term memory recurrent neural networks,” Proceedings of the
Annual Conference of the International Speech Communication Asso-
ciation, INTERSPEECH, pp. 1209–1213, 01 2014.

[69] H. Sak, A. Senior, K. Rao, and F. Beaufays, “Fast and accurate
recurrent neural network acoustic models for speech recognition,”
CoRR, vol. abs/1507.06947, 2015. [Online]. Available: http://arxiv.org/
abs/1507.06947

[70] S. Sano, T. Otsuka, and H. G. Okuno, “Solving googles continuous
audio captcha with hmm-based automatic speech recognition,” in Inter-
national Workshop on Security. Springer, 2013, pp. 36–52.

[71] L. Schönherr, K. Kohls, S. Zeiler, T. Holz, and D. Kolossa, “Adversarial
attacks against automatic speech recognition systems via psychoacoustic
hiding,” arXiv preprint arXiv:1808.05665, 2018.

[72] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize to
a crime: Real and stealthy attacks on state-of-the-art face recognition,”
in Proceedings of the 2016 ACM SIGSAC Conference on Computer and
Communications Security. ACM, 2016, pp. 1528–1540.

[73] S. Solanki, G. Krishnan, V. Sampath, and J. Polakis, “In (cyber) space
bots can hear you speak: Breaking audio captchas using ots speech

recognition,” in Proceedings of the 10th ACM Workshop on Artificial
Intelligence and Security. ACM, 2017, pp. 69–80.

[74] J. Su, D. V. Vargas, and S. Kouichi, “One pixel attack for fooling deep
neural networks,” arXiv preprint arXiv:1710.08864, 2017.

[75] C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan,
V. Vanhoucke, and A. Rabinovich, “Going Deeper with Convolutions,”
in 2015 IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2015, pp. 1–9.

[76] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. Goodfel-
low, and R. Fergus, “Intriguing properties of neural networks,” arXiv
preprint arXiv:1312.6199, 2013.

[77] J. Tam, J. Simsa, S. Hyde, and L. V. Ahn, “Breaking audio captchas,” in
Advances in Neural Information Processing Systems, 2009, pp. 1625–
1632.

[78] R. Taori, A. Kamsetty, B. Chu, and N. Vemuri, “Targeted adversarial ex-
amples for black box audio systems,” arXiv preprint arXiv:1805.07820,
2018.

[79] D. Tsipras, S. Santurkar, L. Engstrom, A. Turner, and A. Madry,
“Robustness may be at odds with accuracy,” arXiv preprint
arXiv:1805.12152, vol. 1, 2018.

[80] T. Vaidya, Y. Zhang, M. Sherr, and C. Shields, “Cocaine noodles:
exploiting the gap between human and machine speech recognition,”
WOOT, vol. 15, pp. 10–11, 2015.

[81] S. Venugopalan, H. Xu, J. Donahue, M. Rohrbach, R. Mooney, and
K. Saenko, “Translating videos to natural language using deep recurrent
neural networks,” arXiv preprint arXiv:1412.4729, 2014.

[82] Z. Yang, B. Li, P.-Y. Chen, and D. Song, “Characterizing audio
adversarial examples using temporal dependency,” arXiv preprint
arXiv:1809.10875, 2018.

[83] X. Yuan, Y. Chen, Y. Zhao, Y. Long, X. Liu, K. Chen, S. Zhang,
H. Huang, X. Wang, and C. A. Gunter, “Commandersong: A systematic
approach for practical adversarial voice recognition,” in Proceedings of
the USENIX Security Symposium, 2018.

[84] G. Zhang, C. Yan, X. Ji, T. Zhang, T. Zhang, and W. Xu, “Dol-
phinattack: Inaudible voice commands,” in Proceedings of the 2017
ACM SIGSAC Conference on Computer and Communications Security.
ACM, 2017, pp. 103–117.

APPENDIX

We provide additional discussion and results considered
insightful, yet tangential to the main contributions of the
proposed attack.

A. Trivial White-Noise Attack

1) Motivation: Readers might be tempted to use trivial
attacks to subvert ASR and AVI models. This includes adding
white-noise to benign audio samples. However, in the follow-
ing subsection, we show that any such trivial techniques will
fail to achieve the dissidents’ goals: fool the model whilst not
impacting human interpretability of the audio sample.

2) Methodology and Setup: We tested this white-noise
method by attacking a random set of 100 audio files that
contained speakers uttering a single word. We added white-
noise to these samples to generate adversarial audio samples.
Next, we passed both the original audio and the white-noise
infused audio samples to the Google Speech API. We recorded
the number of samples that were incorrectly transcribed by the
API.

Next, to measure the impact on human interpretability,
we used the Perceptual Evaluation of Speech Quality (PESQ)
standard [65]. This is a global standard used for measuring the
audio quality of telephony systems. PESQ measures features
such as jitter, packet loss, noise and returns a quality score

15

https://github.com/SeanNaren/deepspeech.pytorch
http://arxiv.org/abs/1507.06947
http://arxiv.org/abs/1507.06947

Attack Name Attack Goal Knowledge Queries Telephony Transferability Time Audio Type
Method Sample

This Work Intentional Mistranscription Black/No 15 3 3 3 milliseconds Clean
Commander Song [83] Hiding Signal in Audio White ? 7 3 7 ? Clean

Qin et al [62] Hiding Signal in Audio White ? 7 7 7 ? Clean
Carlini et al. [30] Hiding Signal in Audio White 1000 7 7 7 ? Clean

M. Azalnot et al. [19] Hiding Signal in Audio Black ? 7 3 7 ? Clean
Houdini [32] Hiding Signal in Audio White ? 7 7 7 ? Clean

Schonherr et al. [71] Hiding Signal in Audio White 500 7 7 7 minutes Clean
Skill Squat [48] Hiding Signal in Audio Black ? 7 7 7 ? Clean
Kreuk et al. [46] Hiding Signal in Audio White ? 7 7 7 ? Clean

Dolphin Attack [84] Hiding Signal in near Ultrasound Black ? 7 3 3 ? Inaudible
HVC (1) [28] Hiding Signal in Noise White ? 7 7 7 32 hours Noisy
HVC (2) [28] Hiding Signal in Noise Black ? 7 7 7 ? Noisy

Cocaine Noodles [80] Hiding Signal in Noise Black ? 7 7 7 ? Noisy
Abdullah et al. [18] Hiding Signal in Noise Black 10 7 3 3 seconds Noisy

TABLE IV: The table provides an overview of the current progress of the adversarial attacks against ASR and AVI systems.
The reader can observe that our attack is different from existing works in its attack goal, adversary required knowledge, number
of required queries, robustness to the telephony network, transferability, required execution time and the type of audio quality.
We have designed the attack to address the specific needs of the dissident, attempting to overcome surveillance infrastructure.
Key: [7] Won’t work or fails to demonstrate that it will. [3] Will work. [?] If authors provide no information in paper.

between 1 (bad quality) and 5 (high quality). By using PESQ,
supplants the need for user studies to measure audio quality.
In our case, the PESQ score can reveal how white-noise will
impact audio quality. We calculate the PESQ scores for each
of the white-noise infused audio samples and calculated the
average.

3) Results: Of the total audio samples we attacked, only
35% of the samples were successfully evaded. Furthermore,
average PESQ score for the samples was 1.06, which implies
very low audio quality. This proves that any trivial attack will
have very low attack success against models, and will have
a strong negative impact on human audio interpretability. In
contrast, the attack proposed in this paper has little to no
impact on the human interpretability (as shown using our
Amazon Turk experiments), and achieve 100% success rate
against any speech-based models.

B. Impulse Perturbation Attack

1) Methodology: ASR systems are trained to learn patterns
using features from the training set. It is important that training
and test sets belong to the same distribution. Otherwise, the
model will have difficulty identifying patterns in the test
set. Intuitively, we may construct a simple perturbation by
sampling outside of the ASR system’s training distribution,
then applying it to an input to trick the ASR system.

We extend our study of ASR system’s sensitivity with
this extremely simple attack. This involves increasing the
amplitude of time-samples within a single phoneme to the
maximum amplitude observed in the entire time series. This
perturbation will create a minor spike in the audio sample,
known as an impulse. If the impulse perturbation succeeds at
confusing the model, it will highlight the high sensitivity of
the model to artificial perturbations. This will motivate further
investigation of other possible attack vectors. These can be
designed to confuse the model even further, with limited to no
impact on human understandability of the attack audio sample.

The impulse perturbation described above might be able to
confuse the model. However, there are a few drawbacks to this
approach. First, most popular ASR systems are often trained on
both clean and degraded audio quality. This is done to ensure

that the ASR systems perform well in noisy environments.
Secondly, ASR system’s architecture is designed to ensure that
even with a limited training set, the model is able to generalize
well. A better generalized model should not be confused by
such a simple perturbation. Any simple attack method will
only have limited success against ASR systems. Therefore, a
further investigation of other attack methods is necessary.

2) Setup: We test our simple attack on the TIMIT corpus.
The TIMIT corpus contains the timestamps of each phoneme
in the audio file. First, we iteratively selected each phoneme
in a word to perturb. Then, each time sample of the target
phoneme is replaced with the largest amplitude value in the
audio file. Each of the attack audio samples is passed Over-
Line to the ASR system for transcription. We then repeat this
process, but only perturb one percent of the phoneme. This
allows us to identify the relationship between the number of
perturbed samples in the phoneme and the mistranscription
rate. For brevity, we tested the simple perturbation method
against a single model.

3) Results: The simple baseline attack above is executed
against the Google (Normal) model. We observe that phonemes
with one percent of their samples perturbed only had a 10%
attack success rate against the model. This number increases
to 43% when the entire phoneme is perturbed by the impulse
value. Although the attack has limited success in this scenario,
the impulses would likely fail to have an effect against an
adversarially-trained model.

4) Simple Defense: During our initial simple perturbation
experiments, we observed that applying impulses to individual
phonemes was easily distinguishable during manual listening
tests. Not only was the attack success rate low, but such
impulses were reminiscent of call audio distortions and jitters
that are commonly heard over telephony networks. Using this
naı̈ve perturbation scheme is not ideal since a machine learn-
ing model will likely perform equally well in distinguishing
impulses as humans. Overall, adversarial training schemes
to defend against this style of attack would be trivial to
implement, and do not give an adversary sufficient probability
of success under our threat model.

16

Original Model
Discard threshold,

% of max. DFT coeff.
2% 4% 8% 16% 32%

Benign Test Set
Accuracy (%) 85 78.6 70.2 57.2 47.4 37.8

0.0000 0.0025 0.0050 0.0075 0.0100 0.0125 0.0150 0.0175 0.0200
Mean Squared Error Between Original and Attacked Audio

0

20

40

60

80

100

Su
cc

es
sf

ul
 T

ra
ns

cr
ip

tio
ns

 (%
)

Efficacy of adversarial training as a defense

Original Model
2% Discard Threshold
4% Discard Threshold
8% Discard Threshold
16% Discard Threshold
32% Discard Threshold

Fig. 10: Top: The relationship between the adversarial training
and the accuracy of the corresponding model on the benign
(unmodified) test set. Bottom: Transcription performance of
our (small dictionary) keyword model when trained on audio
modified to discard frequencies below various thresholds. The
trained models are tested on attack audio with a range of
MSE (relative to the corresponding original audio), and the
percentage of successful transcriptions are plotted.

C. Adversarial Training as a Defense:

One technique that has shown promise in defending com-
puter vision models is adversarial training [53]. However, this
approach has not seen much success in defending speech and
voice identification models [18]. To test this technique against
our attack, we trained six keyword recognition models [10].
For each model, we generated adversarial data using the
method described Section IV-C1. The threshold was deter-
mined as a percentage of the maximum spectral magnitude
(i.e., maxk |fk|); in particular, we considered 2%, 4%, 8%,
16%, and 32% for each of our models, shown in Figure 10. For
example, if the threshold is 4%, we only retain the fk whose
magnitude is greater than 4% of the maximum magnitude.
Each of the models was trained to detect 10 keywords.

Next, we evaluated each model by randomly selecting 20
samples per keyword. Figure 10 displays the results of our
experimentation. Figure 10 (Top) shows the accuracy of each
model on the benign data set, while Figure 10 (Bottom) shows
the transcription success at various levels of acoustic distortion
(relative to the original audio) introduced by our attack. The
red dotted line represents the limit of human comprehension
as defined earlier in Section V-A1.

There are a few important trends to note. First, models
trained with higher threshold values have lower accuracy on
normal audio samples, shown in Figure 10 (Top). This result
is expected, as lower accuracy is an artifact of adversarial
training [79], [34], [49]. Second, as MSE increases, the tran-
scription success rate decreases, shown in Figure 10 (Bottom).
The more samples that have lower MSE behind the red dotted
GSM line, the more sensitive the model is to our attack. Lastly,
adversarial training does decrease model sensitivity to our
attack, relative to the baseline model. Intuitively, this implies

0.0 0.5 1.0
Threshold

th
dh

k
z
v
b

dx
s
y

ng
ax
eh
oy
ux
uh
uw
ih
er
m
ae
ah
g
d
t

jh
n
p
r
l

hv
hh
w
iy
ix
sh

axr
ey
ay
ow
aw
aa

Pho
nem

es

Azure DFT Attack

0.0 0.5 1.0
Threshold

en
aw
hv
el
er
ey

axr
aa
ay
oy
ao
jh
ix
r

ae
sh
g
n

dh
ow

l
p
ih
y

ux
dx
eh
ng

k
m
w
iy
t
s
b
d
z

th
v

ah
uh
uw
ax

Azure SSA Attack

Stops
Affricates
Fricatives
Nasals
Semivowels_and_Glides
Vowels

Fig. 11: The graph above shows the attacks against a voice
identification model. It shows the minimum threshold value re-
quired, when perturbing only a single phoneme, to successfully
force the model to mis-classify the speaker. We can observe
that in general, SSA attacks require much higher thresholds to
successfully fool the model, in comparison to the DFT attack.

a relationship between the amount of adversarial training and
the minimum amount of distortion caused by our attack.

We caution against taking Figure 10 as strong evidence
that adversarial training is a defense against our attack. First,
model sensitivity is measured in the number of samples on the
left the red GSM line in Figure 10. We used the GSM line as
the dividing point between what is and is not comprehensible
by human listeners, as discussed in Section V-A. Hence we
consider attack audio with MSE values to the right of this
line to be failed attack samples. Yet the GSM line should be
viewed as a conservative minimum for human comprehension.
This is important because, for a given model, our attack may
produce many audio samples whose MSE is to the right of
the GSM line. Yet, this does not imply that the model is
necessarily “robust” against our attack. In particular, some high
MSE attack samples may still be understandable by humans
while inducing errors in the model. Second, our experimental
setup was designed only to support a preliminary investigation
of adversarial training as a defense. It would be incorrect
to extrapolate any trends from such a simple experiment. A
broader and more comprehensive examination should consider
(in detail) the effects of different model’s hyper-parameters,
and employ a much larger number of audio samples. We leave
such a study for future work.

D. Supplemental Results

17

0.0 0.5 1.0
Threshold

eng
ax-h

oy
jh

ow
er
ux
uh
el
ch
aa
ao
sh

em
aw
ae
ay
ey
en
hh
uw

f
ih
ax
iy

axr
ah

v
l
r
k
s

ix
w
t

eh
ng
n

dh
y
g
z

m
p

hv
d

dx
b

th
nx

Ph
on

em
es

Google (Normal)

Stops
Affricates
Fricatives
Nasals
Semivowels_and_Glides
Vowels

0.0 0.5 1.0
Threshold

eng
zh
aw
ow
sh
ux
ey
ae
uw
ao
ay
er
ih
aa

ax-h
hh
en
ah

em
iy
ch

axr
eh

y
oy
ax

s
ng
n

uh
w
ix
r
z

m
p

th
k

dh
t
f
g
l

el
dx
b

hv
v

jh
nx
d

Wit

(a) DFT Attack Results.

0.0 0.5 1.0
Threshold

eng
y

uh
ao

axr
er
r

uw
aw
ah
el
iy
w

aa
ux
ow
ih
ix

ae
ng

l
eh
n

ey
ay

em
hv
m
ax
nx
hh

k
d

oy
en
ch

s
v

dx
p

sh
z
t
b

dh
jh
g

th
f

zh
ax-h

Ph
on

em
es

Google (Normal)

0.0 0.5 1.0
Threshold

zh
uh
oy
y

ae
w
k
n
l

ah
dx

r
aa
ow
ux
uw
ay
ix
ih

em
v

m
iy
g

er
el
f

ey
hv
jh
s

sh
p

en
dh
aw
nx

axr
ao
ax

z
eh

t
d
b

ch
hh
ng
th

ax-h
eng

Wit

(b) SSA Attack Results

Fig. 12: Phoneme vulnerability for a selected models, Wit and Google (Normal), using our phoneme-level attacks. Lower threshold
corresponds to lower distortion required for an attack success. The DFT attack exhibits a pattern of targeting the vowels (Brown)
more effectively than other phonemes. In contrast, the SSA attack does not display any such consistent behavior.

18

	I Introduction
	II Background
	II-A Automatic Speech Recognition (ASR) Systems:
	II-B Automatic Voice Identification (AVI) Systems:
	II-C Data-Transforms
	II-C1 Data-Independent Transforms
	II-C2 Data-Dependent Transforms

	II-D Cosine Similarity
	II-E Phonemes

	III Methodology
	III-A Hypothesis and Threat Model
	III-B Attack Steps
	III-C Performance
	III-D Transferability
	III-E Detection and Defense

	IV Setup
	IV-A TIMIT Data Set
	IV-B Word Audio Data Set
	IV-C Attack Scenarios
	IV-C1 Word Level Perturbations
	IV-C2 Phoneme Level Perturbations
	IV-C3 ASR Poisoning
	IV-C4 AVI Poisoning

	IV-D Models
	IV-E Transferability
	IV-F Detection
	IV-G Over-Cellular
	IV-H MTurk Study Design

	V Results
	V-A Attacks Against ASR systems
	V-A1 Word Level Perturbations
	V-A2 Phoneme Perturbations
	V-A3 ASR Poisoning

	V-B Attacks Against AVI systems
	V-C Transferability
	V-D Detection
	V-E Per-Layer Effects
	V-F Over-Cellular
	V-G Amazon Turk Listening Tests

	VI Discussion
	VI-A Phoneme vs. Word Level Perturbation
	VI-B Steps to Maximize Attack Success
	VI-C Why the Attack Works
	VI-D Audio CAPTCHAs

	VII Related Work
	VIII Conclusion
	References
	Appendix
	A Trivial White-Noise Attack
	A1 Motivation
	A2 Methodology and Setup
	A3 Results

	B Impulse Perturbation Attack
	B1 Methodology
	B2 Setup
	B3 Results
	B4 Simple Defense

	C Adversarial Training as a Defense:
	D Supplemental Results

