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Abstract

Phones are used to confirm some of our most sensi-
tive transactions. From coordination between energy
providers in the power grid to corroboration of high-
value transfers with a financial institution, we rely on
telephony to serve as a trustworthy communications
path. However, such trust is not well placed given the
widespread understanding of telephony’s inability to
provide end-to-end authentication between callers. In
this paper, we address this problem through the Authen-
tiCall system. AuthentiCall not only cryptographically
authenticates both parties on the call, but also provides
strong guarantees of the integrity of conversations made
over traditional phone networks. We achieve these
ends through the use of formally verified protocols that
bind low-bitrate data channels to heterogeneous audio
channels. Unlike previous efforts, we demonstrate that
AuthentiCall can be used to provide strong authentica-
tion before calls are answered, allowing users to ignore
calls claiming a particular Caller ID that are unable or
unwilling to provide proof of that assertion. Moreover,
we detect 99% of tampered call audio with negligible
false positives and only a worst-case 1.4 second call
establishment overhead. In so doing, we argue that
strong and efficient end-to-end authentication for phone
networks is approaching a practical reality.

1 Introduction

Telephones remain of paramount importance to society
since their invention 140 years ago, and they are espe-
cially important for sensitive business communications,
whistleblowers and journalists, and as a reliable fallback
when other communication systems fail. When faced
with critical or anomalous events, the default response
of many organizations and individuals is to rely on the
telephone. For instance, banks receiving requests for
large transfers between parties that do not generally

interact call account owners. Power grid operators
who detect phase synchronization problems requiring
careful remediation speak on the phone with engineers
in adjacent networks. Even the Federal Emergency
Management Agency (FEMA) recommends that citizens
in disaster areas rely on phones to communicate sensitive
identity information (e.g., social security numbers) to
assist in recovery [29]. In all of these cases, participants
depend on telephony networks to help them validate
claims of identity and integrity.

However, these networks were never designed to pro-
vide end-to-end authentication or integrity guarantees.
Adversaries with minimal technical ability regularly
take advantage of this fact by spoofing Caller ID, a vul-
nerability enabling over $7 billion in fraud in 2015 [34].
More capable adversaries can exploit weaknesses in
core network protocols such as SS7 to reroute calls and
modify content [15]. Unlike the web, where mechanisms
such as TLS protect data integrity and allow experts
to reason about the identity of a website, the modern
telephony infrastructure simply provides no means for
anyone to reason about either of these properties.

In this paper, we present AuthentiCall, a system
designed to provide end-to-end guarantees of authen-
tication and call content integrity over modern phone
systems (e.g., landline, cellular, or VoIP). While most
phones have access to some form of data connection,
that connection is often not robust or reliable enough
to support secure VoIP phone calls. AuthentiCall
uses this often low-bitrate data connection to mutually
authenticate both parties of a phone call with strong
cryptography before the call is answered. Even in the
worst case, this authentication adds at most a negligible
1.4 seconds to call establishment. Once a call is estab-
lished, AuthentiCall binds the call audio to the original
authentication using specialized, low-bandwidth digests
of the speech in the call. These digests protect the
integrity of call content and can distinguish legitimate
audio modifications attributable to the network from
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99% of maliciously tampered call audio even while a
typical user would expect to see a false positive only
once every six years. Our system is the first to use these
digests to ensure that received call audio originated from
the legitimate source and has not been tampered with
by an adversary. Most critically, AuthentiCall provides
these guarantees for standard telephone calls without
requiring changes to any core network.

Our work makes the following contributions:
• Designs Channel Binding and Authentication Pro-

tocols: We design protocols that bind identities to
phone numbers, mutually authenticate both parties of
a phone call, and protect call content in transit.

• Evaluates Robust Speech Digests for Security: We
show that proposed constructions for digesting speech
data in systems that degrade audio quality can be made
effective in adversarial settings in real systems.

• Evaluates Call Performance in Real Networks: Our
prototype implementation shows that the techniques
pioneered in AuthentiCall are practical and perfor-
mant, adding at most only 1.4 seconds to phone call
establishment in typical settings.
We are not the first to address this prob-

lem [2, 9, 17, 21, 43, 47, 56, 77]. However, other
approaches have relied upon weak heuristics, fail to
protect phone calls using the public telephone network,
are not available to end users, neglect to protect call
content, are trivially evaded, or add significant delay
to call establishment. AuthentiCall is the only system
that authenticates phone calls and content with strong
cryptography in the global telephone network with neg-
ligible latency and overhead. We compare AuthentiCall
to other existing or proposed systems in Section 9.

The remainder of this paper is organized as follows:
Section 2 provides background information about
the challenges underlying authentication in telephony
networks; Section 3 describes our assumptions about
adversaries and our security model in detail; Section 4
gives a formal specification of the AuthentiCall system;
Section 5 discusses how analog speech digests can be
used to achieve call content integrity; Section 6 provides
details of the implementation of our system; Section 7
shows the results of our experiments; Section 8 offers
additional discussion; Section 9 analyzes related work;
and Section 10 provides concluding remarks.

2 Background

Modern telephony systems are composed of a mix of
technologies. As shown in Figure 1, the path between a
caller and callee may transit through multiple networks
consisting of mobile cores, circuit-switched connections
and packet-switched backbones. While the flow of a
call across multiple network technologies is virtually
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Figure 1: In the modern phone network, calls are often
routed through gateways at network boundaries that re-
move authentication information and modify call audio.

invisible to customers, significant transformations occur
to call audio between source and destination. Whereas
the content of data packets on the Internet should not be
modified between source and destination, call audio is
transcoded by gateways to ensure that it is compatible
with the underlying network. As such, users of the global
telephony infrastructure can only be guaranteed that an
approximate but not bitwise identical representation of
their voice will be delivered to the other end of the call.

Any other data that may be generated by a user or
their home network is not guaranteed to be delivered
or authenticatable end-to-end. That is, because the
underlying technologies are heterogeneous, there is no
assurance that information generated in one system is
passed (much less authenticated) to another. This has
two critical implications. The first is that any proofs of
identity a user may generate to their provider are not sent
to the other end of the call. For instance, a mobile phone
on a 4G LTE connection performs strong cryptographic
operations to prove its identity to its provider. However,
there exists no means to share such proofs with a callee
within this system let alone one in another provider’s
network. Second, claims of identity (e.g., Caller ID) are
sent between providers with no means of verifying said
claims. As evidenced by greater than $7 billion in fraud
in 2015 [34], it is extremely simple for an adversary to
trick a receiver into believing any claim of identity. There
is no simple solution as calls regularly transit multiple in-
termediate networks between the source and destination.

It is increasingly common that modern phones have
simultaneous access to at least low-bitrate data channels.
VoIP phones naturally have a secondary data channel, the
majority of mobile phones allow users to both talk and
use data networks simultaneously, and even some circuit-
switched connections (e.g., ISDN) provide phones with
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a data connection. The presence of these data services
does not mean that all calls can be simply converted to
VoIP. For example, cellular data in many places does not
support the high data-rate or quality of service necessary
for intelligible calls. Moreover, it is unlikely that any
provider will entirely scrap their non-VoIP infrastruc-
ture. Accordingly, we argue that the presence of this
low-bitrate data channel creates opportunities to develop
a uniform means of end-to-end authentication across the
heterogeneous mechanisms for delivering call audio.

3 Security Model

In order to authenticate voice calls and content,
AuthentiCall will face adversaries with a range of
capabilities. The simplest adversary will attempt to
commit phone fraud by spoofing Caller ID when calling
a target [59, 60]. An equivalent form of this attack
may occur by the adversary tricking their target to
call an arbitrary number under their control (e.g., via
spam or phishing) and claiming to represent some other
party (e.g., a financial institution) [46]. Additionally,
this adversary may perform a call forwarding attack,
which forces a target calling a legitimate number to be
redirected to the adversary. Lastly, the adversary may
place a voice call concurrent with other legitimate phone
calls in order to create a race condition to see which call
arrives at the destination first. In all of these cases, the
goal of the adversary is to claim another identity for the
purpose of extracting sensitive information (e.g., bank
account numbers, usernames, and passwords).

A more sophisticated adversary may gain access to
a network core via vulnerabilities in systems such as
SS7 [15], or improperly protected legal wiretapping
infrastructure [74]. This adversary can act as a man-in-
the-middle, and is therefore capable of redirecting calls
to an arbitrary endpoint, acting as an arbitrary endpoint,
hanging up one side of a call at any point in time, and
removing/injecting audio to one or both sides. Such an
adversary is much more likely to require nation-state
level sophistication, but exists nonetheless. Examples of
both classes of adversary are shown in Figure 2.

Given that the bitwise encoding of audio is unlikely
to be the same at each endpoint, end-to-end encryption
is not a viable means of protecting call content or
integrity across the heterogeneous telephony landscape.
Moreover, while we argue that the majority of phones
have access to at least a low-bandwidth data connection,
solutions that demand high-speed data access at all
times (i.e., pure VoIP calls) do not offer solutions for
the vast majority of calls (i.e., cellular calls). Finally,
we claim no ability to make changes throughout the
vast and disparate technologies that make up the core
networks of modern telephony and instead focus strictly

Telephony 
Core

Caller ID Spoofing

Telephony 
Core

Telephony 
Core

HI CC#?

Content Injection

Bank

Figure 2: Broad overview of attacks possible on Caller
ID and call content in current telephony landscape.

on addressing this problem in an end-to-end fashion.
We define four participants: the Caller (R), the Callee

(E), the Server (S), and the Adversary (Adv). Callers
and Callees will register with the AuthentiCall service
as described in the next section and will generate
credentials1 that include a public key. AuthentiCall will
achieve the following security goals in the presence of
the above-described adversaries:
1. (G1) Proof of Number Ownership: During the pro-

cess of registration, R will actively demonstrate own-
ership of its claimed Caller ID to S before it receives
a signed certificate.

2. (G2) Authentication of the Caller: E will be able
to cryptographically verify the identity of R prior to
accepting an incoming call.

3. (G3) Authentication of the Callee: R will be able to
cryptographically verify the identity of E as soon as
the call begins.

4. (G4) Integrity Protection of Call Content: R and
E will be able to verify that the analog voice content
has not been meaningfully altered, or that new content
has not been injected by a man in the middle. Addi-
tionally, both will also be protected against concurrent
call attacks.

5. (G5) Proof of Liveness: Both R and E will be able to
detect if the other party is no longer on the call, per-
haps as the result of a man in the middle attempting
to engage in the call after the initial authentication.
We note that AuthentiCall does not provide confiden-

tiality guarantees. While recent work has shown how to
build systems that support anonymous calling [31], en-
crypting call audio end-to-end in lossy, heterogeneous
telephone networks remains an open problem.

4 Protocol Design and Evaluation

Previously, we saw that AuthentiCall has five security
goals to meet, and this section describes the three proto-
cols that AuthentiCall uses to achieve these goals. These

1The details of which are described in depth in Section 4.
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are the Enrollment, Handshake, and Call Integrity proto-
cols.

These protocols make use of certificates issued to
each client that indicate that a particular client controls
a specific phone number. In prior work we proposed a
full public key infrastructure for telephony [56] called a
“TPKI” that would have as its root the North American
Numbering Plan Administration with licensed carriers
acting as certificate authorities. This PKI would issue
an authoritative certificate that a phone number is owned
by a particular entity, and AuthentiCall could enforce
that calls take place between the entities specified in
those certificates. While AuthentiCall can leverage the
proposed TPKI, a fully-deployed TPKI is not necessary
as AuthentiCall can act as its own certificate authority
(this is discussed further in the enrollment protocol).

All of these protocols make use of a client-server
architecture, where an AuthentiCall server acts as
either an endpoint or intermediary between user clients.
There are several reasons for this design choice. First,
having a centralized relay simplifies the development of
AuthentiCall. Although there are risks of adding a cen-
tralized point on a distributed infrastructure, our design
minimizes them by distributing identity verification to a
certificate authority and only trusting a central server to
act as a meeting point for two callers. Second, it allows
the server to prevent abuses of AuthentiCall like robodi-
aling [71] by a single party by implementing rate limit-
ing. The server can authenticate callers before allowing
the messages to be transmitted, providing a mechanism
for banning misbehaving users. Finally, all protocols
(including handshake and enrollment) implement end-to-
end cryptography. Assuming the integrity of the Authen-
tiCall certificate authority infrastructure and the integrity
of the client, no other entity of the AuthentiCall network
can read or fabricate protocol messages. We also assume
that all communications between clients and servers use
a secure TLS configuration with server authentication.

Our protocols have another goal: no human interac-
tion except for choosing to accept a call. There are two
primary reasons for this. First, it is well established that
ordinary users (and even experts) have difficulty exe-
cuting secure protocols correctly [76]. Second, in other
protocols that rely on human interaction, the human
element has been shown to be the most vulnerable [63].

The following subsections detail the three protocols
in AuthentiCall. First, the enrollment protocol ensures
that a given AuthentiCall user actually controls the
phone number they claim to own (G1). The enrollment
protocol also issues a certificate to the user. Second,
the handshake protocol mutually authenticates two
calling parties at call time (G2 and G3). Finally, the
call integrity protocol ensures the security of the voice
channel and the content it carries (G4 and G5).
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Figure 3: Our enrollment protocol confirms phone
number ownership and issues a certificate.

4.1 Enrollment Protocol
The enrollment protocol ensures that a client controls a
claimed number and establishes a certificate that binds
the identity of the client to a phone number. For our
purposes, “identity” may be a user’s name, organization,
or any other pertinent information. Binding the identity
to a phone number is essential because phone numbers
are used as the principal basis of identity and routing
in phone networks, and they are also used as such with
AuthentiCall. The enrollment protocol is similar to other
certificate issuing protocols but with the addition of a
confirmation of control of the phone number.

Figure 3 shows the details of the enrollment protocol.
The enrollment protocol has two participants: a client C
and an AuthentiCall enrollment server SCA. In message
1, C sends an enrollment request with SCA’s identity, C’s
identity info, C’s phone number, and C’s public key. In
message 2, the server sends a nonce NNet , the identities
of C and SCA and the phone numbers of C and SCA with
a timestamp to ensure freshness, liveness, and to provide
a “token” for this particular authentication session.

In message 3, the server begins to confirm that C
controls the phone number it claims. The number is
confirmed when SCA places a call to C’s claimed phone
number. When the call is answered, SCA transmits a
nonce over the voice channel. Having SCA call C is
a critical detail because intercepting calls is far more
difficult than spoofing a source number.2 Using a voice
call is important because it will work for any phone –
including VoIP devices that may not have SMS access.

In message 4, C sends both NNet and NAudio along with
the IDs of server, clients, a timestamp, and a signature
covering all other fields. This final message concludes
the proof of three things: possession of NNet , the ability

2We will revisit the threat of call interception later in this
subsection.
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to receive a call by providing NAudio and possession by C
of the private key K−C by virtue of signing the message.

In message 5, SCA replies with a signed certificate
issued to C. This completes the enrollment protocol.

We note that this protocol is subject to the same
limitations on certifying identity as every other Internet
certificate authority. In particular, we will require an
out-of-band process to verify identity for high-value
certificates, and will require the ability to authenticate
supporting documentation. AuthentiCall can also use
other authoritative information sources like CNAM3

lookups to verify number ownership in some cases.
While no system or process is perfect, these types of
policies have been largely effective on the Internet.

We also note that this is a trust-on-first-use (TOFU)
protocol. While the protocol is secure in the presence of
passive adversaries on both the data and voice networks,
if an adversary can actively intercept a call addressed to
a victim phone number (and also supply any out-of-band
identity confirmation), they may be able to obtain a cer-
tificate for a number they illicitly control. If a TPKI were
deployed, this attack would not be possible. Even with-
out a TPKI, the likelihood of a successful attack is lim-
ited. Success is limited because the attack would even-
tually be detected by the legitimate owner when they
attempt to register or authenticate using the legitimate
number. To further protect against the prior attack, our
protocol meets an additional goal: human interaction is
not required for enrollment and confirming control of the
claimed phone number. This means that automatic peri-
odic reverification of phone number control is possible.
This is important to prevent long-term effects of a brief
phone number compromise, but also for more mundane
issues like when phone numbers change ownership.

4.2 Handshake Protocol

The handshake protocol takes place when a caller
intends to contact a callee. The caller places a voice call
over the telephone network while simultaneously using
a data connection to conduct the handshake protocol.

The handshake protocol consists of two phases.
The first indicates to the AuthentiCall server and the
calling party that a call is imminent. The second phase
authenticates both parties on the call and establishes
shared secrets. These secrets are only known end-to-end
and are computed in a manner that preserves perfect
forward secrecy. Figure 4 shows the handshake protocol.

Prior to the start of the protocol, we assume that C has

3CNAM is the distributed database maintained by carriers that
maps phone numbers to the names presented in traditional caller ID.
While spoofing a number is trivial, CNAM lookups occur out-of-band
to call signaling and results could only be spoofed by a carrier, not a
calling party.
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Cert(R),TS1, NR,DHR,SignK�
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Figure 4: Our handshake protocol mutually authenticates
both parties.

connected to S via TLS, meaning S has properly authenti-
cated itself to C. After connecting C authenticates itself
to S, by either presenting a username/password pair or by
signing a challenge with its private key.

The first phase consists of messages 1–3. In message
1, a caller R indicates to an AuthentiCall server S that R
would like to place a call to the callee E. In message 2,
S informs the callee E that an authenticated voice call is
incoming.

In message 3, S informs R whether E is an Authenti-
Call user or not, but does not provide information about
E’s presence or availability. Message 3 has several aims.
The first is to protect the privacy of E. A strawman
mechanism to protect privacy is for AuthentiCall to pro-
vide no information about E until E agrees to accept the
call. However, this presents a problem: if an adversary
tampers or blocks messages from E, it prevents E from
participating in the handshake, and R would have to
assume (in the absence of outside knowledge) that E is
not a participant in AuthentiCall. This would allow an
adversary to evade AuthentiCall. To solve this problem,
S simply indicates to R whether or not R should expect
to complete an AuthentiCall handshake for this call if E
is available and chooses to accept the call. This reveals
only E’s preference to authenticate a phone call, and
nothing about her availability or whether she has even
chosen to accept or reject a call. Protecting this informa-
tion is important because if an unwanted callee knows
that a user is available, they may call repeatedly or use
that information in other undesirable ways (e.g., harass-
ment or telemarketing). If message 3 indicates that E is
not an AuthentiCall user but E does not choose to accept
the call, R must simply wait for the call request to time
out. From R’s perspective, this is no different from dial-
ing and waiting for a busy signal or voicemail and should
add little to no latency to the call. If message 3 indicates
that E is not an AuthentiCall user, the protocol ends at
this step and R is forced to fallback to an insecure call.
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The second handshake phase authenticates R and
E and consists of messages 4A-B and 5A-B. These
messages are indicated by letters A and B because the
messages contain the same fields for caller and callee
respectively. They can be computed independently and
sent in parallel, reducing round trip latencies.

Message 4 contains all information necessary for a
Diffie-Hellman key establishment authenticated with a
signature key defined in the certificate of R or E. It also
contains identity information for R or E, the calling or
called phone number, a timestamp, and a nonce. Each
side also provides a Diffie-Hellman share, and the entire
message is signed with the public key in the certificate
issued by AuthentiCall.

After message 4, both sides combine their Diffie-
Hellman secret with the share they received to generate
the derived secret. Each client then generates keys
using the Diffie-Hellman result, the timestamps of both
parties, and the nonces of both parties. These keys are
used to continue the handshake and to provide keys for
the integrity protocol.

Message 5A and 5B contain an HMAC of messages
4A and 4B along with a string to differentiate message
5A from message 5B. The purpose of this message is to
provide key confirmation that both sides of the exchange
have access to the keys generated after messages 4A and
4B. This message concludes the handshake protocol.

4.3 Call Integrity Protocol
The call integrity protocol binds the handshake con-
ducted over the data network to the voice channel estab-
lished over the telephone network. Part of this protocol
confirms that the voice call has been established and con-
firms when the call ends. The remainder of the messages
in this protocol exchange content authentication informa-
tion for the duration of the call. This content integrity
takes the form of short “digests” of call audio (we discuss
these digests in detail in the following section). These di-
gests are effectively heavily compressed representations
of the call content; they allow for detection of tampered
audio at a low bit rate. Additionally, the digests are ex-
changed by both parties and authenticated with HMACs.

Figure 5 shows the details of the call integrity
protocol. The protocol begins after the voice call is
established. Both caller R and callee E send a message
indicating that the voice call is complete. This message
includes a timestamp, IDs of the communicating parties
and the HMAC of all of these values. The timestamp
is generated using the phone clock which is often
synchronized with the carrier.4 These messages are

4In this setting, loose clock synchronization (approximately one
minute) is sufficient; if necessary, S can also provide a time update at
login.
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Figure 5: Our call integrity protocol protects all speech
content.

designed to prevent attacks where a call is redirected
to another phone. One possible attack is an adversary
maliciously configuring call forwarding on a target; the
handshake would be conducted with the target, but the
voice call would be delivered to the adversary. In such
a case, the target would not send a “call established”
message and the attack would fail.

Once the voice call begins, each side will encrypt and
send the other audio digests at a regular interval. It is
important to note that we use unique keys generated
during the handshake for encryption, message authen-
tication codes, and digest calculation. The messages
also guarantee freshness because the index is effectively
a timestamp, and the message authentication codes are
computed under a key unique to this call. Timestamps
in messages 1-N are indexed against the beginning of
the call, negating the need for a synchronized clock. In
order to prevent redirection attacks, the messages are
bound to the identities of the communicating parties by
including the IDs in the HMACs and by using keys for
the HMACs that are unique to the call.

When the voice call ends, each side sends a “call con-
cluded” message containing the client IDs, a timestamp,
and their HMAC. This alerts the end point to expect
no more digests. It also prevents a man-in-the-middle
from continuing a call that the victim has started and
authenticated.

4.4 Evaluation

Our protocols use standard constructions for certificate
establishment, certificate-based authentication, authen-
ticated key establishment, and message authentication.
We therefore believe our protocols are secure based
on inspection. Nevertheless, we used ProVerif [20] to
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further analyze the handshake and enrollment proto-
cols. Our ProVerif code can be found in our technical
report [55]. The analysis verified that our handshake
protocol establishes and never leaks the secret key.
The protocol also provides authentication and perfect
forward secrecy for both the caller and callee. The
enrollment protocol is verified to never leak the private
keys of either party. This property allows us to assert
that both signatures and certificates cannot be forged.

5 Speech Digest Design and Evaluation

The previous section describes how AuthentiCall enrolls
and authenticates users prior to a call. During a call,
AuthentiCall needs a way to summarize speech content
in order to authenticate audio using a low-bandwidth
data connection. To accomplish this goal, we leverage
research from an area of signal processing that produces
techniques that are known as “perceptual hashes” or
“robust hashes.” Robust digests have been developed for
a wide domain of inputs, including music, images, and
speech, but their applicability has remained limited. Un-
like cryptographic hashes, which change drastically with
small changes in input, robust hashes give very similar
outputs for similar inputs. By definition, a robust digest
cannot provide collision resistance (or second preimage
resistance) because collisions are the property that make
them useful. In this paper, we call these techniques
“speech digests” to avoid confusion with cryptographic
hashes. To our knowledge, this work presents one of the
first uses of robust speech digests for security.

A speech digest has two goals. First, it must ac-
curately summarize the content of the call. However,
it is not necessary for this summary to be lossless
or meaningful for human interpretation. We are also
concerned more with semantics (i.e., words spoken) than
we are with speaker voice characteristics (e.g., tone,
identity) or extraneous features like noise. Second, the
digest must be robust to non-semantic changes in audio.

Because of ambient or electronic noise, intermittent
loss, and the use of differing encodings throughout the
phone network, the audio transmitted by a phone will
not be the same as the audio received. In particular,
the audio received is practically guaranteed to not be
identical on a bit level to the audio sent by the phone.
This means that common data digest approaches like
cryptographic hashes will fail.

While the original phone system used analog trans-
mission of voice, it is now common in every telephone
network (landline, VoIP, cellular, etc.) for speech to
be digitized and compressed using an audio codec.
At network boundaries, it is common for audio to be
decoded and recoded into a different codec (known as
transcoding). Codecs used in the phone network are

highly lossy and drastically distort the call audio, and
so have the potential to significantly impact audio digest
performance. Because some phone systems (especially
cellular and VoIP) use lossy networks for transmission,
frames are routinely lost. For example, loss rates of 4%
are considered nominal for cellular voice [12].

These legitimate modifications caused by the phone
network must be distinguished from changes to audio
induced by an adversary. The following subsections
provide a description of the speech digests we use in
AuthentiCall and a thorough analysis of the performance
of these digests for telephone calls.

5.1 Construction and Properties

There are a number of constructions of speech digests,
and they all use the following basic process. First, they
compute derived features of speech. Second, they define
a compression function to turn the real-valued features
into a bit string. We use the construction of Jiao et al. [36]
called RSH. We chose this technique over others because
it provides good performance on speech at a low-bitrate,
among other properties. We note that the original work
did not evaluate the critical case where an adversary can
control the audio being hashed. Our evaluation shows
that RSH maintains audio integrity in this crucial case.
The construction also selects audio probabilistically; we
show in Appendix B that the digest indeed covers all
of the semantic content in the input audio. Finally, to
our knowledge we are the first to use any robust speech
digest for an authentication and integrity scheme.

For space reasons, and because we do not claim the
design of the RSH digest as a research contribution, we
provide a detailed description of the actual computation
of an RSH digest in Appendix A. However, the remainder
of this subsection will provide details necessary for the
rest of this paper. RSH computes a 512-bit digest for each
1 second of audio, and the digest can be thought of as a
heavily compressed version of the audio in the call. The
digest is computed probabilistically using a keyed pseu-
dorandom number generator with a key derived during
the handshake (Section 4.2) in AuthentiCall. The prob-
abilistic nature of the digest ensures that digests of the
same phrase (e.g., “Hello”) differ and cannot simply be
replayed. Digests are computed by the caller and are re-
ceived and verified by the callee. The verifying party
computes the digest of the received audio and the Ham-
ming distance between the calculated and received di-
gests. Because degradation of audio over a phone call is
expected, digests will not match exactly. However, the
Hamming distance between two audio digests (equiva-
lent to the bit error rate (BER)) quantifies the change in
the audio. By setting an appropriate threshold on BER,
maliciously modified audio can be detected.
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5.2 Implementation and Evaluation
Now that we have seen how RSH digests are computed,
we can evaluate properties of RSH digests. This includes
effects of legitimate transformations and the results of
comparing digests of unrelated audio samples (as might
be generated by an adversary). We also describe how we
use digests to detect tampered audio.

We implement RSH using Matlab, and we deploy
it in our AuthentiCall prototype by using the Matlab
Coder toolbox to generate C code that is compiled as
an Android native code library. We use the TIMIT
audio corpus [30] which is a standard test dataset for
speech processing systems. It consists of high-fidelity
recordings of 630 male and female speakers reading 10
English sentences constructed for phonetic diversity.
Because RSH computes hashes of one second of audio,
we split the TIMIT audio data into discrete seconds of
audio corresponding to a unique section of audio from
a speaker and sentence. This resulted in 22,487 seconds
of unique audio.

5.2.1 Robustness

Robustness is one of the most critical aspects of our
speech digests, and it is important to show that these
digests will not significantly change after audio under-
goes any of the normal processes that occur during a
phone call. These include the effects of various audio
encodings, synchronization errors in audio, and noise.
To test robustness, we generate modified audio from
the TIMIT corpus and compare the BER of digests of
standard TIMIT audio to digests of degraded audio. We
first downsample the TIMIT audio to a sample rate of
8kHz, which is standard for most telephone systems.
We used the sox [5] audio utility for downsampling and
adding delay to audio to model synchronization error.
We also used sox to convert the audio to two common
phone codecs, AMR-NB (Adaptive Multi-Rate Narrow
Band) and GSM-FR (Groupe Spécial Mobile Full-Rate).
We used GNU Parallel [67] to quickly compute these
audio files. To model frame loss behavior, we use a
Matlab simulation that implements a Gilbert-Elliot loss
model [32]. Gilbert-Elliot models bursty losses using a
two-state Markov model parameterized by probabilities
of individual and continued losses. We use the standard
practice of setting the probability of an individual loss
(p) and probability of continuing the burst (1− r) to the
desired loss rate of 5% for our experiments. We also use
Matlab’s agwn function to add Gaussian white noise at
a 30 decibel signal to noise ratio.

Figure 6 shows boxplots representing the distribution
of BER rates of each type of degradation tested. All
degradations show a fairly tight BER distribution near
the median with a long tail. We see that of the effects

Figure 6: These box plots show the distribution of
digests bit error rates as a result of various audio
degradations. These error rates are well below the rates
seen by adversarial audio, shown in Figure 7

Figure 7: This graph shows the histogram and kernel
density estimate of digest of adversarial audio on over
250 million pairs of 1-second speech samples. While
the majority of legitimately modified audio has digest
errors less than 35%, adversarial audio has digest BERs
averaging 47.8%.

tested, 10ms delay has the least effect; this is a result of
the fact that the digest windows the audio with a high
overlap. For most digests, addition of white noise also
has little effect; this is because LSF analysis discards
all frequency information except for the most important
frequencies. We see higher error rates caused by the
use of audio codecs like GSM-FR and AMR-NB;
these codecs significantly alter the frequency content
of the audio. We can also see that a 5% loss rate has
negligible effect on the audio digests. Finally, we see
that combining transcoding, loss, delay, and noise has an
additive effect on the resulting digest error — in other
words, the more degradation that takes place, the higher
the bit error. These experiments show that RSH is robust
to common audio modifications.
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5.2.2 Adversarial Audio

While robustness is essential, the ultimate goal of these
digests is to detect maliciously tampered or injected
audio, which we term “adversarial audio.” Such an
analysis has not been previously performed. To validate
the ability of RSH to detect adversarial audio we compute
the BER of digests of every pair of seconds of TIMIT
audio discussed in the previous section. This dataset
includes 252,821,341 pairs of single seconds of audio.
For this test, we use the same key for every hash; this
models the situation where an adversary can cause the
target to receive audio of its choice but not modify the
associated digest.

We find that the mean BER between two distinct audio
pairs is 0.478. A histogram and kernel density estimate
of these values is also shown in Figure 7. This plot
shows that the bit error is normally distributed with a
mean and median of 0.478 and 0.480 (respectively). The
expected bit error for two random bit strings is 50%, and
the mean seen for RSH bit error is close to the optimal,
best possible distance between two adversarial digests.

Because the TIMIT corpus contains speakers speaking
several identical sentences, we can investigate the re-
silience of the digest to more specific adversarial scenar-
ios in two important ways. First, we can look at whether
using different speech from the same speaker can create
a false positive. If so, this would be a serious problem
because an adversary could use recorded words from the
target speaker undetected. Second, we can determine if
a different speaker uttering the same words causes false
positives. This test indicates to what extent the digest is
protecting content instead of speaker characteristics.

We found that digests from the same speaker speaking
different content are accepted at practically the same rate
as audio that differs in speaker and content. At a BER
detection threshold of 0.384 (derived and discussed in
the following subsection), the detection rate for different
content spoken by the same speaker is 0.901482, while
the detection rate for different content spoken by a dif-
ferent speaker is 0.901215. However, identical phrases
spoken by different speakers results in a much higher
rate of collision and a detection rate of 0.680353. This
lower detection rate is not a problem for AuthentiCall
because it is still high enough to detect modified call au-
dio with high probability. More importantly, it indicates
that RSH is highly sensitive to changes in call content.

5.2.3 Threshold selection and performance

Distinguishing legitimate and illegitimate audio requires
choosing a BER threshold to detect tampered audio.
Because the extreme values of these populations overlap,
a tradeoff between detection and false positives must be
made. The tradeoff is best depicted in a ROC curve in

Figure 8: The digest performance ROC graph shows that
digests can easily distinguish between legitimate and
substituted audio, even in the presence of transcoding,
loss, delay, and noise. These results are computed over
digests of a single second. The graph is scaled to show
the extreme upper corner.

Figure 8. This figure shows the true positive/false posi-
tive tradeoff measured on the adversarial audio and two
legitimate modifications – GSM encoding and a combi-
nation of GSM, AMR-NB, 5% frame loss, 10ms delay,
and 30dB of white noise. This combination represents an
approximate “worst case” of legitimate audio. Figure 8
shows excellent performance in terms of distinguishing
audio. For GSM-only audio, we see an area-under-curve
of 0.998, and for the “worst case” audio, we see an
area-under-curve of 0.992. However, because digests
will be used at a high rate (one per second), even with
a very small false positive rate, alerting users for every
individual detection will likely result in warning fatigue.
As a result, the most important metric for evaluating a
threshold is minimizing the user’s likelihood of a false
positive. This problem suggests trading off sensitivity to
short changes in call content for a lower false positive
rate. To reduce overhead and network load, AuthentiCall
sends digests in groups of five. To provide high detection
rates while limiting false positives, AuthentiCall alerts
the user if any 3 out of 5 digests are greater than the
BER threshold. We model true and false performance of
this scheme as a set of five Bernoulli trials — successful
authentication for true positives and successful digest
collision for false positives. Thus, we can compute
3-out-of-5 performance using the binomial distribution.

After this analysis, we selected an individual-digest
BER threshold of 0.384. This corresponds to an in-
dividual adversary audio true positive detection rate of
0.90, while presenting a 0.0058 false positive rate against
our “worst-case” audio and a 0.00089 false positive rate
against clean GSM-FR encoded audio. Using our “three-
out-of-five” alerting scheme, the probability of detecting
3 or more seconds of tampered audio is 0.992. The false
positive rate is drastically reduced: the false positive rate
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is 1.96× 10−6, and for clean GSM-FR audio the false
positive rate is 7.02× 10−9. This corresponds to a false
alert on average every 425.1 hours of talk time for worst
case audio, and for GSM-FR audio one false positive ev-
ery 118,766 hours. The average British mobile phone
user only places 176 minutes per month of outbound
calls [65]; assuming inbound and outbound talk time are
roughly equal, the average user only places 70.4 hours of
calls per year. This means that the average AuthentiCall
user would only see a false alert once every six years.

5.2.4 Limitations

No security solution is perfect, and our use of audio
digests have some limitations. The chief limitation is
that audio digests cannot detect altered audio less than
one second in length. This limitation is simply a result
of the constraints of doing low-bitrate authentication of
mutable and analog data.

While the digests are not perfect, we argue that they
are secure against most adversaries. We note that audio
digests have two purposes: 1) to provide a guarantee that
the voice call established was the one that was negotiated
in the handshake and 2) that the voice content has not sig-
nificantly changed during the call. These two goals deal
with adversaries of different capabilities. In particular,
intercepting and modifying call audio requires far more
advanced access and capability than simply spoofing a
caller ID during a handshake already occurring. Audio
digests will detect the first scenario within five seconds
of audio, and it will also quickly detect changes that
effect any three seconds in five for the second scenario.

In limited circumstances, it may be possible for a
man-in-the-middle adversary to make small modifica-
tions to the received audio. For the second attack to be
successful in the presence of these digests, a number of
conditions must hold: First, the adversary can change
no more than two seconds out of every five seconds of
audio. Second, the adversary must change the audio in a
way that would sound natural to the victim. This would
mean that the changed audio would have to conform to
both the current sentence pattern as well as the speaker’s
voice. While voice modification algorithms exist (e.g.,
Adobe VoCo [10] and Lyrebird [11]), modifying an
existing sentence in an ongoing conversation is beyond
the abilities of current natural-language processing.
Also, since our digests depend on the semantic call
content, changes to the structure of a sentence (and not
necessary audible voice) would alert the user. Finally, in
addition to the substantial difficulty of these limits, the
adversary must also do all of this in soft-real-time.

Additionally, our threat model assumes the adversary
has access to the audio (but not the keys) that generated
the digest and thus second preimage resistance is a rel-

evant property. Note that our security argument rests in
the computational difficulty of finding a series of colli-
sions in real-time using semantically relevant audio. The
protection that RSH would provide for preimage resis-
tance (given an arbitrary digest but no corresponding
audio) depends primarily on the security of the keyed-
pseudorandom selection of audio segments for each di-
gest. Evaluating this property is interesting but not im-
mediately relevant to the security of our system.

Nevertheless, a user is still not defenseless against
such an attack. While we believe such attempts would
likely be noticeable and suspicious to the human ear,
users could also receive prompts from AuthentiCall
when individual digests fail. These prompts could
recommend that the user ask the opposing speaker to
elaborate their prior point or to confirm other details to
force the adversary to respond with enough tampered
audio that the attack could be detected.

6 System Implementation

The previous sections described the protocol design
and characterized our speech digests. In this section,
we describe our AuthentiCall client and server imple-
mentation, and in the following section evaluate its
performance.

Server: Our server was implemented in Java, using
Twilio’s Call API to call clients during the registration
phase to share the audio nonce that confirms control of
a phone number. Google Cloud Messaging (GCM) is
used to generate a push notification to inform clients of
incoming calls.

Client: Our prototype AuthentiCall client consists of
an Android app, though we anticipate that in the fu-
ture AuthentiCall will be available for all telephony plat-
forms, including smartphones, VoIP phones, PBXs, and
even landlines (with additional hardware similar in con-
cept to legacy Caller ID devices that uses a wireless or
wired LAN data connection).

A TLS connection is used to establish a secure
channel between client and server. We implement the
AuthentiCall protocol in Java using the Spongy Castle
library [1]. The audio digests were implemented in
Matlab, compiled to C, and linked into the app as native
code. In our implementation, digest protocol messages
contain five seconds of audio digests.

We use RSA-4096 to as our public key algorithm and
SHA-3 for the underlying hash function for HMACs. To
reduce handshake time, we use a standard set of NIST
Diffie-Hellman parameters hardcoded into the client.
These are NIST 2048-bit MODP group with a 256-bit
prime order subgroup from RFC5114 [41]. We also use
the HMAC-based key derivation algorithm used by TLS
1.2 described in RFC 5869 [39]. Upon registration, the
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Figure 9: Enrollment takes less than 30 seconds and is a
one time process that may be done in the background.

server issues the client an X509 certificate. This consists
of a user’s claimed identity, phone number, validity,
public key and signature of the CA.

Audio Nonces: As described in Section 4, the Au-
thentiCall enrollment protocol sends a nonce through the
voice channel to ensure that an client can receive a voice
call. We use a 128-bit random nonce. In our implemen-
tation, the nonce is encoded as touch-tones (DTMF5).
DTMF tones were used because they are faithfully trans-
mitted through every telephone system and were simple
to send and detect. There are 16 possible touch-tone dig-
its 6, so each tone can represent an encoded hexadecimal
digit. These tones are transmitted for 200ms each with a
100ms pause between tones. This provides a bit rate of
13.3 bits per second for a nonce transmission time of 9.6
seconds. This transmission time comprises the bulk of
the time spent in the enrollment protocol.

7 Results

Our AuthentiCall implementation allows us to test
its performance in enrollment, call handshakes, and
detecting modified call audio in real phone calls.

7.1 Experiment Setup
Before describing individual experiments, we describe
our experiment testbed. The AuthentiCall server was
placed on an Amazon Web Services (AWS) server
located in Northern Virginia. We used the same network
provider, AT&T, and the same cellular devices, Samsung
Galaxy Note II N7100s, across all experiments. The
enrollment and handshake experiments were carried out
20 times over both WiFi and 3G, and digest exchange

5Dual-Tone Multi-Frequency tones are the sounds made by dialing
digits on a touch-tone phone.

6Four DTMF tones are not available on consumer phones but
provide additional functionality in some special phone systems

Figure 10: AuthentiCall adds 1 to 1.41 seconds to
the phone call establishment, making the overhead
effectively unnoticeable to users.

tests were done 10 times using WiFi. Digest exchange
was done over WiFi as this experiment was used to
validate content protection, not delivery speed. In all
experiments, calls used a 3G voice channel.

We evaluate 3G and WiFi because our research phones
do not support 2G-only operation. We note that not
all wireless access is created equal, and actual speeds
depend on many factors including network congestion,
transmission power, and interference.

7.2 Enrollment Protocol
Our first experiments measure the user enrollment time.
We measure the time from the instant a user begins
enrollment to when the user receives the last protocol
message, including all protocol messages and the audio
nonce. For clients, enrollment is a one-time process that
is done before the first call can be placed, analogous to
activating a credit card. Figure 9 shows the average time
of enrollment using 3G and WiFi to exchange protocol
messages. The main contributor to the enrollment time
comes from the transmission of the audio nonce which
is used to establish ownership. Though the enroll-
ment times over 3G and WiFi are 25 and 22 seconds
respectively, this protocol requires no user interaction.

7.3 Handshake Protocol
We next measure the time to complete an entire hand-
shake, including data messages and voice call setup. We
note that voice call setup time is substantial, and requires
many seconds even without AuthentiCall. We believe
the most important performance metric is additional
latency experienced by the end user. As shown in
Figure 10, AuthentiCall only adds 1.07 seconds for WiFi
or 1.41 seconds on 3G data to the total call establishment
time (error bars indicate standard error). We believe that
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this will be unnoticeable to the user for several reasons.
First, call establishment time varies significantly. This
is normal network behavior, not an artifact introduced
by AuthentiCall. In our 3G experiments our additional
handshake time is approximately equal to the standard
error in voice call establishment. We also note that our
test phones were in the same location connected to the
same tower, so the voice call setup time is likely lower
than a typical call. In fact, our measured times are very
close to the published estimates of 6.5 seconds for call
setup by the tower between both phones [4]. Finally, we
note that this is substantially faster than Authloop [56]
which takes nine seconds to perform authentication after
call delivery.

7.4 Speech Digest Performance

Our final experiments evaluate our speech digest accu-
racy over real call audio. In these 10 calls, we play 10
sentences from 10 randomly selected speakers in the
TIMIT corpus through the call, and our AuthentiCall im-
plementation computed the sent and received digests. In
total this represented 360 seconds of audio. For simplic-
ity, a caller sends audio and digests, and a callee receives
the audio and compares the received and locally com-
puted digests. We also compared these 10 legitimate call
digests with an “adversary call” containing different au-
dio from the hashes sent by the legitimate caller. To com-
pare our live call performance to simulated audio from
Section 5, we first discuss our individual-hash accuracy.

Figure 11 shows the cumulative distribution of BER
for digests of legitimate audio calls and audio sent by
an adversary. The dotted line represents our previously
established BER threshold of 0.348.

First, in testing with adversarial audio, we see that
93.4% of the individual fraudulent digests were detected
as fraudulent. Our simulation results saw an individual
digest detection rate of 90%, so this means that our
real calls see an even greater performance. Using our
3-out-of-5 standard for detection, we detected 96.7%.
This test shows that AuthentiCall can effectively detect
tampering in real calls. Next, for legitimate calls, 95.5%
of the digests were properly marked as authentic audio.
Using our 3-out-of-5 standard, we saw no five-second
frames that were marked as tampered.

While our individual hash performance false positive
rate of 4.5% was low, we were surprised that the
performance differed from our earlier evaluation on
simulated degradations. Upon further investigation, we
learned that our audio was being transmitted using the
AMR-NB codec set to the lowest possible quality setting
(4.75kbps); this configuration is typically only used
when reception is exceptionally poor, and we anticipate
this case will be rare in deployment. Nevertheless, there

Figure 11: This figure shows that 93.4% of individual
digests of adversarial audio are correctly detected while
95.5% of individual digests of legitimate audio are
detected as authentic. Using a 3-out-of-5 detection
scheme, 96.7% of adversarial audio is detected.

are several mechanisms that can correct for this. One
option would be to digest audio after compression for
transmission (our prototype uses the raw audio from
the microphone); such a scheme would reduce false
positives partially caused by known-good transforma-
tion of audio. Another option is to simply accept these
individual false positives. Doing so would result in a
false alert on average every 58 minutes, which is still
acceptable as most phone calls last only 1.8 minutes [3].

8 Discussion

We now discuss additional issues related to AuthentiCall.
Applications and Use Cases: AuthentiCall provides

a mechanism to mitigate many open security problems
in telephony. The most obvious problems are attacks
that rely on Caller ID fraud, like the perennial “IRS
scams” in the United States. Another problem is that
many institutions, including banks and utilities, use ex-
tensive and error-prone challenge questions to authenti-
cate their users. These challenges are cumbersome yet
still fail to stop targeted social engineering attacks. Au-
thentiCall offers a strong method to authenticate users
over the phone, increasing security while reducing the
authentication time and effort.

Another valuable use case is emergency services,
which have faced “swatting” calls that endanger the lives
of first responders [73] as well as denial of service attacks
that have made it impossible for legitimate callers to re-
ceive help [8]. AuthentiCall provides a mechanism to al-
low essential services to prioritize authenticated calls in

586    26th USENIX Security Symposium USENIX Association



(b)(a)

Figure 12: Before the call is answered, AuthentiCall
indicates if the call is authenticated or unauthenticated

such a scenario while answering other calls opportunisti-
cally. While such a proposal would need to be reviewed
by public policy experts and stakeholders, we provide a
mitigation to a problem with no clear solution.

Server Deployment: AuthentiCall relies on a central-
ized server infrastructure to facilitate authenticated calls
while minimizing abuse. AuthentiCall, including server
infrastructure, could be provided by a carrier or an in-
dependent organization. While a centralized model is
simplest to test our hypothesis that auxiliary data chan-
nels can be used to authenticate traditional voice calls,
we intend to study decentralized and privacy-preserving
architectures in future work.

Cellular Network Load: Systems that make use of
the cellular network must be careful not to increase sig-
naling load on the network in a harmful way [26,40,62].
We believe that AuthentiCall will not cause network
harm because in modern networks (3G and 4G), data sig-
naling is no longer as expensive as a voice call, and si-
multaneous voice and data usage is now commonplace.

Certificate Management: Any system that relies on
certificates must address certificate revocation and ex-
piration. AuthentiCall’s centralized model allows the
server to deny use of any revoked certificate, drastically
simplifying revocation compared to CRLs or protocols
like OCSP. Similar to Let’s Encrypt [7], AuthentiCall
certificates can have short lifetimes because certificate
renewal using our enrollment protocol is fast and requires
no human interaction. Our certificate authority proposal
is one of many possible designs. As mentioned in Sec-
tion 4, AuthentiCall could also make use of the proposed
Telephony PKI [56]. In this scenario, certificate lifetime
would be determined by the TPKI, which would also is-
sue a certificate revocation list.

Why IP data: We chose IP data over other chan-
nels because it provides reliable and fast data transmis-

sion for most existing devices including smartphones,
VoIP phones, and even landlines if provided with suitable
hardware. As an example, SMS as a transmission carrier
would be impractical. Bandwidth is low, and delivery is
slow and not guaranteed [69]. In particular, the aver-
age time to send one SMS message is 6.4 seconds [53],
meaning that AuthentiCall using SMS would require a
minimum of 38.4 seconds — effectively increasing call
setup time by a factor of 5. If data connections are not
available, users could use a system like Authloop to au-
thenticate their calls. [56]

Why Not Biometrics: Robust speech digests are a su-
perior solution for content integrity than voice biometrics
for several reasons. First, voice authentication is sim-
ply not secure in adversarial settings [38]. Second, voice
biometrics would assume that the call would only con-
sist of a single party (e.g., speakerphones would not be
supported). By contrast, audio digests are speaker inde-
pendent and can be computed locally with no additional
knowledge about the other party.

Denial of Service Adversaries may attempt to break
the security of AuthentiCall by selectively dropping pro-
tocol messages, but AuthentiCall can detect these attacks
and fail to complete a call or end an in-progress call. In
the handshake, the client will not accept a voice call until
the all authentication messages are complete. During the
integrity protocol, the client can enforce tight timeouts
of all messages and alert the user of an attack if expected
messages do not arrive.

User Interface We have developed a complete work-
ing prototype of AuthentiCall for Android, including a
preliminary simple user interface as shown in Figure 12.
Along with previous research [72], this is one of the first
interfaces to indicate secure Caller-ID, our prototype in-
terface is intended to simply and clearly alert the user to
the safety of the call. We note that indicating security in
a user interface requires great care [13, 16], and we in-
tend to formally study interface design for AuthentiCall
in future work.

9 Related Work

Authentication has long been a concern in telephony
networks. Chiefly motivating that concern has been the
need to identify customers to bill for service usage [69].
The strength of such authentication mechanisms have
varied widely, from easily breakable or weak authentica-
tion (e.g., 1G and 2G cellular) [18, 54] and authorization
[42, 70, 75] to strong mutual authentication (e.g., LTE).
However, all of these mechanisms do not provide
authentication end-to-end.

Researchers have attempted to address the problem
through one of two classes of solutions: heuristics or
cryptography. In the case of the former, researchers have
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explored a wide range of solutions: blacklists of phone
numbers [6, 44, 52], call-back verification [47], channel
characterization [57], call data analysis [35, 45, 48, 58],
carrier level ID extraction [68], timing [47], call prove-
nance [17], name registries [22] and biometrics [14, 19,
27, 37]. The difficulty with these is that their defenses
are probabilistic in nature and may be weak in various
adversarial settings. Given the increasing number of
attacks on machine learning algorithms [33,49,50], such
techniques offer uncertain security properties.

As for cryptographic solutions, most have been VoIP-
only (e.g., Zfone and Redphone) [2, 9, 21, 43, 77]. Such
solutions not only require high bandwidth at all times,
but also cannot be extended to the heterogeneous global
telephone network. Additionally, they are susceptible
to man-in-the-middle attacks [28, 63] and are difficult
to use [25, 51, 61, 64]. Tu et al. have described how to
modify SS7, the core telephony signaling protocol, to
support authenticated Caller ID [72]. This protocol is not
end-to-end (so the protocol is vulnerable to malicious
network endpoints like IMSI-catchers [23, 24]), requires
both endpoints to call from an SS7-speaking network,
and most importantly would also require modifying core
network entities throughout every network.

The solution closest to our own is Authloop [56].
Authloop uses a codec agnostic modem and a TLS-
inspired protocol to perform authentication solely over
the audio channel. While Authloop provides end-to-end
authentication for heterogeneous phone calls, it has a
number of limitations compared to AuthentiCall. The
constrained bandwidth of the audio channel means
that the handshakes are slow (requiring 9 seconds
on average), authentication is one-sided, and content
authentication is not possible. While Authloop can
prevent some forms of man-in-the-middle attacks, it
is vulnerable to attacks that replace content. Finally,
because Authloop relies on the audio channel, users
must answer all calls before they can be authenticated.
AuthentiCall overcomes all of these limitations.

10 Conclusion

Telephone networks fail to provide even the most basic
guarantees about identity. AuthentiCall protects voice
calls made over traditional telephone networks by lever-
aging now-common data connections available to call
endpoints. AuthentiCall cryptographically authenticates
both call parties while only adding a worst case 1.4
seconds of overhead to the call setup time. Unlike other
solutions that use voice calls, AuthentiCall also protects
the content of the voice call with high accuracy. In so
doing, AuthentiCall offers a solution to the constant
onslaught of illicit or fraudulent bulk calls plaguing the
telephone network.
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A RSH Digest Construction

In this appendix, we describe the construction of the RSH digest
used by AuthentiCall for channel binding and content integrity.

There are a number of constructions of speech digests, and
they all use the following basic process. First, they compute
derived features of speech. Second, they define a compression
function to turn the real-valued features into a bit string. In
this paper, we use the construction of Jiao et al. [36], which
they call RSH. We chose this technique over others because it
provides good performance on speech at a low-bitrate, among
other properties. We note that the original work did not eval-
uate the critical case where an adversary can control the audio
being hashed. Our evaluation shows that RSH maintains audio
integrity in this crucial case. The construction also selects
audio probabilistically; we show in Appendix B that the digest
indeed protects all of the semantic content in the input audio.
Finally, to our knowledge we are the first to use any robust
speech digest for an authentication and integrity scheme.

Figure 13 illustrates how RSH computes a 512-bit digest for
one second of audio. In the first step of calculating a digest,
RSH computes the Line Spectral Frequencies (LSFs) of the
input audio. LSFs are used in speech compression algorithms
to represent the major frequency components of human voice,
which contain the majority of semantic information in speech.

1 Second of Audio

r0,0 r0,1
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… r200,10

DCT DCT

>
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Figure 13: This figure illustrates the digest construction
described in Section 5.1. Audio digests summarize call
content by taking one second of speech data, deriving
audio features from the data, and compressing blocks of
those features into a bit string.

That is, LSFs represent phonemes – the individual sound
units present in speech. While pitch is useful for speaker
recognition, LSFs are not a perfect representation of all of
the nuances of human voice. This is one reason why it is
sometimes difficult for humans to confidently recognize voices
over the phone. This means that the digest more accurately
represents semantic content rather than the speaker’s voice
characteristics. This is important because a number of tech-
niques are able to synthesize new speech that evades speaker
recognition from existing voice samples [38,66]. Finally, LSFs
are numerically stable and robust to quantization — meaning
that modest changes in input yield small changes in output. In
RSH, the input audio is grouped into 30ms frames with 25ms
audio overlap between frames, and 10 line spectral frequencies
are computed for each frame to create a matrix L.

The second phase of digest computation involves com-
pressing the large amount of information about the audio into
a digest. Because audio rarely changes on millisecond time
scales, the representation L is highly redundant. To compress
this redundant data, RSH uses the two-dimensional discrete
cosine transform (DCT). The DCT is related to the Fourier
transform, is computationally efficient, and is commonly
used in compression algorithms (e.g., JPEG, MP3). RSH

computes the DCT over different sections of the matrix L
to produce the final digest. RSH only uses first eight DCT
coefficients (corresponding to the highest energy components
and discarding high-frequency information).

The second phase of digest computation – the compression
function – uses the DCT algorithm in the computation of the
bitwise representation of the audio sample. The following
process generates 8 bits of a digest; it is repeated 64 times to
generate a 512-bit digest.

1. Obtain a window size w and two window start indexes l1
and l2 from the output of a keyed pseudorandom function.

2. Select from L two blocks of rows. These blocks B1 and
B2 contain all columns from l1 : l1 + w and l2 : l2 + w
respectively.

3. Compress these individual blocks into eight coefficients
each using the DCT.

4. Set eight digest bits by whether the corresponding coeffi-
cients of the first block (B1) are greater than the coefficients
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of the second block (B2).
We note that sections of audio are selected probabilistically;

we show in Appendix B that the probability that a section of
audio is not used in a digest is negligible.

An important consideration is to note that the digest is
keyed. By using a keyed pseudorandom function, repeated
phrases generate verifiable unique digests. It also has the
advantage that it makes it difficult to compute digests for
audio without knowledge of the key, which in AuthentiCall is
derived during the handshake for each call. In AuthentiCall,
digests themselves are also authenticated using an HMAC to
guarantee digest integrity in transit.

Digests of spoken audio are sent by both parties. The
verifying party computes the digest of the received audio, then
computes the hamming distance between the calculated and
received digests. Because degradation of audio over a phone
call is expected, digests will not match exactly. However, the
Hamming distance between two audio digests — or bit error
rate (BER) — is related to the amount of change in the audio.
By setting an appropriate threshold on BER, legitimate audio
can be distinguished from incorrect audio.

B Probabilistic Analysis of Robust Hash-
ing

AuthentiCall uses the RSH speech digest algorithm [36], which
probabilistically selects sections of audio for inclusion. The
initial research did not establish whether all audio was included
in every hash. In this appendix, we bound the probability that
one or more 5ms sections of audio (which are individual rows
in the matrix L) are not included. The analysis shows that it is
possible for a few milliseconds of audio to be excluded – less
than 25 milliseconds of audio. This is less than an individual
phoneme, could not change semantic meaning of the audio,
and losses of 25 milliseconds or more are common in audio
transmission and typically go unnoticed by users. Accordingly,
the digests effectively cover call content.

Fix an even integer N > 0, and fix a block
width w ∈ [2..N/2]. Let r ∈ [1..N] be a row index of the
matrix L. We begin by computing the probability that in any
particular trial, the r-th row is not covered by at least one of the
two blocks B1,B2 used in the robust hashing algorithm. Recall
that the “top” row of B1 and B2 are randomly selected each trial.
Thus, let `1, `2 be uniform integers in the range [1..N +1−w].

Let X (i)
r be an indicator random variable for the event

that row f is covered by at least one of these blocks in
the i-th trial. Then we observe that X (i)

r = 0 iff the event
r 6∈ [`1..`1 +w−1]∧ r 6∈ [`2..`2 +w−1] occurs. We have

Pr
[

X (i)
r = 0

]
= Pr [r 6∈ [`1..`1 +w−1] ] ·

Pr [r 6∈ [`2..`2 +w−1] ]

= Pr [r 6∈ [`1..`1 +w−1] ]2

since `1, `2 are independent and identically distributed. There
are two cases to consider. When r ∈ [1..w−1] we have

Pr
[

X (i)
r = 0

]
=

(
1− r

N +1−w

)2
≤ e−2r/(N+1−w)

because there are only r values for `1 (resp. `2) that cause
block B1 (resp. B2) to include the r-th row of L. When r ≥ w,
which is the common case when N� w, we have

Pr
[

X (i)
r = 0

]
=

(
1− w

N +1−w

)2
≤ e−2w/(N+1−w) .

To build some intuition for these probabilities, take N = 200
and w = 51 (the average value if w were selected uniformly
from its range), Pr

[
X (i)

1 = 0
]
≤ 0.98, i.e., the first row is

almost certainly not covered in any particular trial. But this
quickly decreases as r grows, and when r = w (and beyond)
we have Pr

[
X (i)

r = 0
]
≤ 0.51. Keep in mind that the robust

hashing algorithm runs t = 64 independent trials, thus, defining
the indicator Xr = 1 iff

∨t
i=1 X (i)

r = 1, we have

Pr [Xr = 0 ]≤
{

e−t(2r)/(N+1−w) when r < w
e−t(2w)/(N+1−w) when r ≥ w

Thus Pr [X1 = 0 ] ≤ (0.98)64 ≈ 0.43, and for r ≥ w we have
Pr [Xr = 0 ] ≤ (0.51)64 ≈ 2−64. It is apparent that the first few
rows of L are unlikely to be covered, but that the remaining
rows are covered in some trial with overwhelming probability.

Continuing, let X = ∑
N
r=1 Xr, i.e., the number of rows

covered across all t trials. Additionally, let W be a uniform
value in [2..N/2]. (Recall that in the robust hashing algorithm,
the parameter w is chosen this way for each trial.) By linearity
of expectation we have

E[X |W = w] =
N

∑
r=1

E[Xr |W = w]

=
N

∑
r=1

Pr [Xr = 1 ]

= N−
N

∑
r=1

Pr [Xr = 0 ]

= N−
(

w−1

∑
r=1

Pr [Xr = 0 ]+
N

∑
r=w

Pr [Xr = 0 ]

)

≥ N−
(

w−1

∑
r=1

e−t(2r)/(N+1−w)

+(N +1−w)e−t(2w)/(N+1−w)

)

Again, when N = 200,w = 51, t = 64, we have
E[X |W = 51]≥ 198.4; on average, the number of rows missed
is less than two. Finally, we define f (w) = E[X |W = w]
and consider E[ f (W )], which is the average number of rows
covered over random choices of block width and block-starting
rows. When N = 200, t = 64 we have E[ f (W )] ≥ 195.4; thus
fewer than five rows are completely missed, on average, across
all trials. With overwhelming probability, it will be the first
few rows that are missed. As we discussed at the beginning of
this section, this audio would could not affect the semantics of
the transmitted speech.
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