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Recent years have seen the Short Message Service (SMS) become a critical component of the security in-
frastructure, assisting with tasks including identity verification and second-factor authentication. At the
same time, this messaging infrastructure has become dramatically more open and connected to public net-
works than ever before. However, the implications of this openness, the security practices of benign services,
and the malicious misuse of this ecosystem are not well understood. In this article, we provide a compre-
hensive longitudinal study to answer these questions, analyzing over 900,000 text messages sent to public
online SMS gateways over the course of 28 months. From this data, we uncover the geographical distribu-
tion of spam messages, study SMS as a transmission medium of malicious content, and find that changes in
benign and malicious behaviors in the SMS ecosystem have been minimal during our collection period. The
key takeaways of this research show many services sending sensitive security-based messages through an
unencrypted medium, implementing low entropy solutions for one-use codes, and behaviors indicating that
public gateways are primarily used for evading account creation policies that require verified phone numbers.
This latter finding has significant implications for combating phone-verified account fraud and demonstrates
that such evasion will continue to be difficult to detect and prevent.
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1 INTRODUCTION

Text messaging has become an integral part of modern communications. First deployed in the late
1990s, the Short Messaging Service (SMS) now delivers upwards of 4.2 trillion messages around
the world each year (The Open University 2014). Because of its ubiquity and its perception as
providing a secondary channel bound tightly to a user’s identity, a range of organizations have
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2:2 B. Reaves et al.

implemented security infrastructure that take advantage of SMS in the form of one-time codes
for two-factor authentication (Aloul et al. 2009; DeFigueiredo 2011; Duo Mobile 2015) and account
validation (Thomas et al. 2013).

The text messaging ecosystem has evolved dramatically since its inception and now includes
a much wider range of participants and channels by which messages are delivered to phones.
Whereas phone numbers once indicated a specific mobile device as an endpoint and were costly
to acquire, text messages may now pass through a range of different domains that never touch a
cellular network before being delivered to a non-cellular endpoint. Moreover, these systems allow
users to send and receive messages for free or low cost using numbers not necessarily tied to a
mobile device, specific geographic area, or even a single customer. As such, they violate many of
the assumptions upon which the previously mentioned security services were founded.

In this article, we perform the first longitudinal security study of the modern text messaging
ecosystem. Because of the public nature of many SMS gateways (i.e., messages are simply posted
to their websites), we are able to gain significant insight into how a broad range of companies are
implementing SMS-based services as an important part of their security infrastructure. Moreover,
these systems allow us to see the ways in which defenses such as phone-verified accounts (PVAs)
are successfully being circumvented in the wild. Our work makes the following contributions:

—Largest Public Analysis of SMS Data: While others have looked at aspects of SMS secu-
rity in the past (Delany et al. 2012; Dmitrienko et al. 2014), ours is the largest and longest
study to date. Our analysis tracks over 600 phone numbers in 31 countries over the course
of 28 months, resulting in a dataset of 900,655 messages. This dataset, which is double the
size of our previous study (Reaves et al. 2016a), allows us to reason about the messaging
ecosystem as a whole and allows us to determine whether previous observations represent
steady-state problems or are instead temporary issues.

—Evaluation of Security Posture of Benign Services: We observe how a range of popular
services use SMS as part of their security architecture. While we find many services that
attempt to operate in a secure fashion, we identify a surprising number of other services that
send sensitive information in the clear (e.g., credit card numbers and passwords), include
identifying information, and use low entropy numbers for their one-use codes. Because
there is no guarantee that this channel is indeed separate, such observations create the
potential for attacks. Additionally, during our collection period, NIST deprecated the use
of SMS authentication (Grassi et al. 2016). However, we show that many services have not
complied with this recommendation.

—Characterization of Malicious Behavior via SMS Gateways: We cluster and character-
ize the lifetime, volume, language, location, and content of the traffic seen in SMS gateways.
Our analysis uncovers numerous malicious behaviors, including bulk targeted spam cam-
paigns and phishing. Most critically, our data shows that these systems are being used to
support phone-verified account fraud, and the ways in which these systems are used makes
proposed mitigations from previous work (Thomas et al. 2014) largely ineffective.

—Longitudinal Analysis: Having the longest running SMS dataset to date, we then ana-
lyzed both malicious and benign behaviors over the course of two years. We find these
behaviors to be largely stable and showing no significant changes over time, implying that
these behaviors will likely continue for the foreseeable future.

We note the very fact that some users are willing to intentionally direct text messages to public
portals is obviously dangerous. We do not address this phenomenon and instead focus on the risks
of compromise of the SMS channel. Because these messages are known by the recipient to be
publicly available, this dataset would naturally not be entirely representative of all SMS activity
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Fig. 1. The modern SMS ecosystem includes a wide variety of non-traditional carriers, ESME gateways and
resellers, and OTT services. This evolution challenges old assumptions (e.g., phone numbers represent mobile
devices tied to a single identity) and creates new opportunities for interception.

of a typical user. Nevertheless, this dataset enables the first public insights into issues such as PVA
scams, SMS spam, and sensitive information sent by legitimate services. Furthermore, this data is
widely available to the community for continued evaluation and measurement in the future.

The remainder of the article is organized as follows: Section 2 discusses the modern SMS ecosys-
tem, which includes and extends beyond traditional cellular infrastructure; Section 3 discusses our
collection and analysis methodology; Section 4 characterizes our dataset; Section 5 discusses our
analysis on legitimate usage of SMS via the gateways; Section 6 discusses the malicious behaviors
seen in our dataset. Section 7 analyzes related work, and Section 8 provides concluding remarks.

2 THE MODERN SMS ECOSYSTEM

In this section, we describe at a high level how text messages are sent and received, with an em-
phasis on developments that have greatly expanded the SMS ecosystem.

Figure 1 shows the components of the modern SMS ecosystem. Short Messaging Service Centers
(SMSCs) route messages through carrier networks and are the heart of the SMS system (Traynor
et al. 2008). These entities receive inbound text messages and handle delivery of these messages
to mobile users in the network using a store-and-forward regime similar to email. When a mobile
device sends or receives a text message, the message is encrypted between the phone and the base
station serving the phone; however, once inside the core network the message is typically not
encrypted.

Text messages’ are not just sent between individuals but also by parties external to the network
known as External Short Message Entities (ESMEs). ESMEs form an entire industry dedicated
to facilitating the sending and receiving of messages for large-scale organizations for purposes
as diverse as emergency alerts, donations to charities, or receiving one-time passwords (Traynor
2012). These ESMEs act as gatekeepers and interfaces to SMS. Some have direct connections to
SMSCs in carrier networks via SMPP (Short Message Peer-to-Peer) (SMS Forum 2003), while others
resell such access purchased from other ESMEs. For example, the VoIP carrier Bandwidth provides
SMS access to many third-party services. Recently, startups like Twilio (2015), Nexmo (2015), and
Plivo (2015) serve as ESMEs and provide easy-to-deploy, low-cost voice and SMS services.

Just as SMS distribution has evolved over the past two decades, how end users receive SMS
has evolved as well. Originally, SMS were only delivered to mobile phones or to ESMEs. With the

!n this article, we use SMS and “text message” interchangeably.

ACM Transactions on Privacy and Security, Vol. 22, No. 1, Article 2. Publication date: December 2018.



2:4 B. Reaves et al.

advent of smartphones, this ecosystem is changing rapidly. Over-the-top networks like Burner
(2015), Pinger (2015), and Google Voice (2015) provide SMS and voice services over data networks
(including cellular data). Many of these services contract out to third-party ESMEs for service and
do not actually act as ESMEs themselves. Additionally, messages that are delivered to a mobile
device may not remain restricted to that device. Systems like Apple Continuity (2015), Google
Voice, Pushbullet (2015), and MightyText (2015) use local wireless networks or cloud services to
store and sync SMS from the receiving device to the user’s other devices. Millions of subscribers
use these services to transfer their messages from their localized mobile device to be stored in the
cloud.

The modern SMS ecosystem has the security consequence that a single SMS may be processed
by many different entities—not just carriers—who in toto present a broad attack surface. Essen-
tially, the attack surface of the bulk collection of text messages has grown to include various types
of ESMEs and many other end devices such as laptops and tablets. Attacks against these systems
may be technical in nature and take a form similar to publicized data breaches (Krebs 2014, 2015a,
2015b; U.S. Office of Personnel Management 2015). Additionally, redirection attacks on the SS7
network can reroute calls and SMS messages to an endpoint controlled by an adversary without
knowledge to the user (Karsten Nohl 2016; Luca Melette 2016). More specifically, such attacks can
be carried out by any independent party that is willing to purchase access to the SS7 network. Once
inside, the attacker can spoof call forwarding requests to redirect the calls/messages to themselves
or eavesdrop into a conversation (Peeters et al. 2018). These attacks on the SS7 core are becoming
more prevalent and easier to exploit than ever. Social engineering attacks are also possible. Mobile
Transaction Authentication Numbers (mTANs)? have been stolen using SIM Swap attacks (Tims
2015), where an attacker impersonates the victim to a carrier to receive a SIM card for the victim’s
account, allowing the attacker to intercept security-sensitive messages. Attackers have also com-
promised accounts protected by one-time-passwords delivered over SMS by impersonating the
victim to set up number forwarding to an attacker-controlled device (Campbell-Dollaghan 2014).
Accordingly, it is worth determining what data are sent via SMS so that the consequences of future
compromise are well understood.

This work measures how different entities implement security mechanisms via text messages
through the use of public SMS gateways. As such, we are able to observe a wide array of services
and their behavior through time. Additionally, because these gateways provide phone numbers to
anonymous users, we are also able to measure the extent to which such gateways are being used
for malicious purposes. This combined measurement will help to provide the research community
with a more accurate and informed picture of the security of this space.

3 METHODOLOGY

In this section, we describe the origins of our dataset, discuss some limitations of the data, discuss
supplementary sources that give us additional insights into our SMS dataset, and finally describe
the techniques we use to analyze the dataset.

3.1 Public Gateways

In the previous section, we noted that there are a number of organizations that process text mes-
sages, including carriers, ESMEs, resellers, and value-added services like message syncing. Within
the category of ESMEs lie a niche class of operator: public SMS gateways. Many third-party en-
tities (including cellular carriers) provide external public interfaces to send text messages but not

2mTANSs are used to authenticate mobile banking transactions via SMS in many countries, including Germany, South
Africa, and Russia.
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receive them. Example use cases include the convenience of an email gateway or the ability to use
a web service to send a message to a friend after one’s mobile phone battery dies.

While there are many public services for sending messages, they also have counterparts in pub-
lic websites that allow anyone to receive a text message online. These systems publish telephone
numbers that can receive text messages, and when a text message arrives at that number the web
site publicly publishes the text message. These services are completely open—they require no reg-
istration or login, and it is clear to all users that any message sent to the gateway is publicly avail-
able. Messages that show up in these gateways can be sent through different network technologies
(e.g, GSM, UMTS, LTE, or from other ESMEs), as such, we expect to see no difference in message
content from any of those technologies. We recognized the research value of these messages for
the potential to inform a data-driven analysis, and collected them over a 28 month period from
8 distinct public gateways that facilitate the reception of text messages,’® listed in Table 1. These
gateways have similar names that are potentially confusing, so where appropriate, we reference
them by an assigned number 1-8 based on message volume. In Figure 2, we show the overlap in
phone numbers provided by gateways. The fact that these gateways share many phone numbers
concurrently indicates they are operated by collaborating parties.

To gain more information on the gateways, we did a WHOIS lookup on each of the services.
We saw that all services were registered sometime between 2011 and 2014. From the eight gate-
ways, only three had public information available; the rest had their WHOIS information hidden.
The three remaining gateways were registered in China, Pakistan, and Brazil. We note that these
gateways only provided numbers in countries outside the country indicated in their registration.

These different services have essentially the same functionality, but advertise their intended use
in different ways. These include avoiding spam, creating phone-verified accounts, and enhancing
privacy by not giving out a user’s real number. We suspect that the business model of most of
these websites relies on advertising revenue, and this is confirmed by at least Gateway 2, which
prominently displays “almost all of [our income] comes from our online advertising” in a banner
requesting that users disable their ad blocker. However, advertising is not the sole source of rev-
enue for every system: Gateways 3, 4, 5, 6, and 8 sell private numbers for receiving SMS, while
Gateways 4 and 5 actually sell verified Google Voice and WhatsApp accounts.

3Note that throughout the rest of the article, we use the term “gateway” to refer exclusively to these receive-only SMS
gateways.
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Ethical Considerations. As researchers, our ultimate goal is to improve the security practices of
users and organizations, but we must do so ethically. In particular, we should make every effort to
respect the users whose data we use in our studies.

A superficial ethical analysis would conclude that because it is clear that all messages sent to
these gateways are public, and their use is strictly “opt-in,” users have no reasonable expectation
of privacy in the collection and analysis of this data. While we believe this analysis to be true,
the situation is more complex and requires further discussion, as there are a number of parties
to these messages. In addition to users who knowingly provide a gateway number as their own
phone number, other individuals and institutions (companies, charities, etc.) may send information
to individuals, not knowing that the messages are delivered to a public gateway. While institutions
rightfully have privacy rights and concerns, they differ from those of individuals. As we show
in our results, the vast majority of the information that we collect is sent indiscriminately and
automatically by organizations to a large number of recipients. This information is unlikely to
contain information that would negatively impact the institution if disclosed. Although we study
bulk institutional messages, we do not analyze further those messages determined to be of a strictly
personal nature. While those messages may have a research value, we deliberately avoid these
messages to prevent further propagating this data.

Nevertheless, the use of gateways absolutely creates confidentiality and privacy concerns. For
example, when personally identifying information (PII) or account credentials are sent to a gate-
way (whether or not all parties are aware), the compromise of that information is immediate and
irrevocable.! Because we do not make our data available to others, this study does not change—in
severity or duration—the harm done by the existence and use of the gateway. Furthermore, while
in Section 5.1 we describe a host of sensitive information found in the dataset, we do not publish,
use, or otherwise take advantage of this information. In particular, we especially do not attempt
to access accounts owned by gateway users or operators.

We recognize that there are ethical questions raised not just with the collection of this data but
also by combining it with other data sources. Our data augmentation is sufficiently coarse-grained
that no individual user of a gateway could be identified through our additional data.” Geographic
information not already disclosed in text messages was limited to country-scale records in the case
of gateway users and city-scale in the case of gateway numbers (which in any case do not likely
correlate with the location of the gateway operator).

Overall, our hope is this study would raise awareness of the risks of sending sensitive informa-
tion over insecure media and prevent future harm.

Limitations. To the best of our knowledge, this article presents an analysis of the largest dataset
of SMS published to date. However, there are some limitations to this data. First, because the mes-
sages are public, many services that use SMS (like mobile banking) are likely underrepresented in
our dataset. For this reason, it is likely that our findings about sensitive data appearing in SMS are
likely underestimated. Second, because gateways change their phone numbers with regularity, it
is unlikely that long-term accounts can be successfully created and maintained using these num-
bers, which may bias the number of services we observe in our dataset. Accordingly, those users
are unlikely to enable additional security services like mobile two-factor authentication (2FA) us-
ing one-time passwords (OTP), further limiting our visibility to a wider range of services. These

4Except perhaps by the gateway itself; however, it is clear from our data that gateways are not taking steps to prevent PII
exposure.

The one exception to this was an individual whose information was used (likely without his/her knowledge) to register
a domain used in a phishing scam. This information was discovered after a routine WHOIS lookup after discovering the
phishing domain.

ACM Transactions on Privacy and Security, Vol. 22, No. 1, Article 2. Publication date: December 2018.



Characterizing the Security of the SMS Ecosystem with Public Gateways 2:7

limitations mean that the overall distributions that we report may not generalize to broader popula-
tions. Nevertheless, we believe that this work provides useful conclusions for the security commu-
nity.

3.2 Crawling Public Gateways

We gather messages by crawling gateway pages using the Scrapy (2015) framework. Every 15min,
our crawler visited each gateway, obtained new messages, and stored these in a database. We
faced two challenges to accurately recording messages: ignoring previously crawled messages and
recovering message received times.

Ignoring previously crawled messages was difficult, because gateways display the same mes-
sages for a considerable amount of time (days, months, or even years). A consequence of this is
that our dataset contains messages that gateways received before our data collection began. To
prevent storing the same messages repeatedly (and thus skewing the results), we discard previ-
ously crawled messages upon arrival by comparing the hash of the sender and receiver MSISDNs
and the message content against hashes already in the database. If a match is found, then the mes-
sage sent times are compared to ensure that they were the same instance of that message, ensuring
that messages that were repeatedly sent are still included in the data.

Message times required finesse to manage, because gateways report a relative time since the
message was received (e.g., “3 hours ago”) instead of an ideal ISO-8601 timestamp. Parsing these
timestamps is fairly simple, but care must be taken when doing comparisons using these times
as the precision can vary (“3 minutes” vs. “3 days”). To ensure accuracy, we store and take into
account the precision of every timestamp when comparing message timestamps.

3.3 Additional Data Sources and Analyses

3.3.1 Phone Number Analysis. After the scrapers pull the initial data from the gateways, the
data is augmented with data from two outside sources. The first service, Twilio (2015), provides
a RESTful service that provides mobile, VoIP, and landline number look ups. Twilio resolves the
number’s country of origin, national number format for that country, and the number’s carrier.
Carrier information includes the carrier’s name, the number’s type, and the mobile network and
country codes. Twilio is accurate and appropriately handles issues like number porting, which
could cause inconsistencies in our data if incorrect.

The second service, OpenCNAM (2015), provides caller identity information for North American
numbers. This database contains a mapping of phone numbers and strings; carriers consult this
database to provide Caller ID information when connecting a call. Therefore, OpenCNAM is also
the most accurate public location to obtain identity information for North American numbers.

We obtained data from both Twilio and OpenCNAM for all gateway numbers as well as a subset
of the numbers that contacted the hosted numbers.

3.3.2  URL Analysis. We extracted 51,849 URLs from messages by matching URL regular expres-
sions with each message in the dataset. Overall, there were 1,754 unique second-level domains and
2,390 unique base URLs (fully-qualified domain names and IP addresses) in this set. For each of
these domains, we obtained domain registration data. A domain’s WHOIS registration data con-
tains useful metadata about the history of a domain, including its creation date. Since this data is
distributed among registrars, it is not always available and some fields may be restricted.

Due to the limited length of an SMS message, shortened URLs are often sent in these messages.
The short URL is a hop between the user and the destination, allowing URL shortening services
to collect data about the users following the links. For each Bitly- and Google-shortened URL,
we obtained statistics (e.g., number of clicks) when possible. The SMS gateway services do not
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publish data on their users, so this data represents one of the best insights into user demographics
in our dataset.

Finally, since these gateways freely accept and publicly post SMS messages, the gateways repre-
sent an easy mechanism for delivering malicious messages including phishing or malicious URLs.
VirusTotal (2015) can provide valuable insight into the maliciousness of a given URL. We requested
scans of each of the URLs via VirusTotal and collected the scan reports.® If a URL had a previously-
requested scan, then we collected the cached scan and did not rescan the URL. Due to the short
lifetimes of some malicious domains, we anticipated earlier scan results would be more accurate.
For each product that VirusTotal uses to scan the URL, it reports whether or not the product alerted
and if so, the category of detection.

3.3.3  Personally-ldentifying Information Analysis. We searched the messages for personally-
identifying information (PII) (McCallister et al. 2010) using regular expressions. In particular, we
searched for major credit card account numbers (e.g., Visa, Mastercard, American Express, Dis-
cover, JCB, and Diners Club). For each match, we further verified these numbers using the Luhn
algorithm (Luhn 1960). This algorithm performs a checksum and can detect small input errors in an
account number. This checksum is built into all major credit card account numbers and can also as-
sist in distinguishing a 16-digit Visa account number from a 16-digit purchase order number. This
check is rudimentary, however, and we manually verified the remaining matches to verify that
they contextually appeared to be account numbers (i.e., the messages containing these numbers
appeared to reference an account).

Furthermore, we also checked strings of numbers to determine if they were identification num-
bers such as U.S. Social Security Numbers or national identifiers from Austria, Bulgaria, Canada,
China, Croatia, Denmark, Finland, India, Italy, Norway, Romania, South Korea, Sweden, Taiwan,
or the United Kingdom. We found no valid matches in our data.

3.4 Message Clustering

A major goal of this study is to determine what types of messages are sent via SMS and how service
providers are using this form of communication. To do so, we grouped messages together into
unique clusters’ that are representative of their content. The essence of our clustering algorithm
is distance-based clustering (Frey and Dueck 2007). We note that the messages of our interest were
virtually identical, apart from known common variable strings like codes or email addresses. By
replacing these with fixed values, a simple lexical sort would group common messages together.
We then identified cluster boundaries by finding where the normalized edit distance was lower
than a threshold (0.9) between two consecutive sorted messages. Our threshold was empirically
selected to conservatively yield correct clusters with high accuracy.
A more explicit statement of this process follows:

(1) Load all messages.

(2) Preprocess messages by replacing numbers, emails and URLs with fixed strings.

(3) Alphabetically sort preprocessed messages.

(4) Separate messages into clusters by using an edit distance threshold to find dissimilar consec-
utive messages.

(5) Manually inspect each cluster to label service providers, message types, and so on. In this step,
we culled clusters that had <43 messages.®

®We were not able to obtain reports for 365 URLs due to poor formatting of the SMS messages.

7Our use of this term should not be confused with the classic machine learning definition of “clustering.”

8We initially planned on labeling only clusters with more than 50 messages, but our labelling process resulted in more
labeled clusters than expected.
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After clustering, we manually labeled each cluster, a time-consuming process that allowed us
to both verify the correctness of the cluster generation, and guarantees correct labels. We note
that this clustering was done on the same dataset (386,327 messages) found in our original work’
(Reaves et al. 2016a). Instead of reclustering the new messages with this algorithm, we simply
made a regular expression for each cluster that was used in new analyses.

3.5 Message Intentions

Due to the lack of standardized terms for the intentions of the authentication and verification val-
ues sent via SMS, we divided the various message intentions into categories in this section. In this
article, we use code to describe the value extracted from any message sent to a user for any of
the below intentions. To our knowledge, there is no authoritative source for these intentions, de-
spite their popularity. More than half of the messages contain a code, and the following categories
enabled us to more accurately cluster our messages:

—Account Creation Verification: The message provides a code to a user from a service
provider that requires a SMS verification during a new account creation.

— Activity Confirmation: The message provides a code to a user from a service provider
asking for authorization for an activity (e.g., payment confirmation).

—One-Time Password: The message contains a code for a user login.

—One-Time Password for Binding Different Devices: The message is sent to a user to
bind an existing account with a new phone number or to enable the corresponding mobile
application.

—Password Reset: The message contains a code for account password reset.

—Generic: We use this category for any codes to which we are unable to assign a more
specific intent.

4 DATA CHARACTERIZATION

In this section, we provide high-level information about our collected data. The dataset includes
data from 8 gateways over 28 months. Overall, our dataset includes 900,655 messages sent from
625 phone numbers from 65 known carriers in 30 countries. Table 2 shows the message count for
gateway phone numbers alongside the total number of gateway numbers by country.

Gateways and Messages. Table 1 shows the eight gateways we scraped, the number of messages
from each, and the number of unique phone numbers hosted at each service during the collection
time. The number of messages received by each gateway ranged from 12,367 to 180,865. The hosted
numbers per service ranged from 19 to 138.

Infrastructure. We obtained detailed data from Twilio about the phone numbers in our dataset,
as shown in Table 3. Twilio identified 65 carriers, of which 55 are mobile, 7 are VoIP, and three are
labeled as landline carriers. We believe that the numbers seen from these “landline” carriers are
mislabeled as landlines by Twilio and are actually mobile numbers, due to all three being carri-
ers that advertise both mobile and landline service. Furthermore, Twilio indicates numbers from
Bandwidth as “mobile” numbers (this is not due to porting, as Twilio resolves porting scenarios).
Bandwidth is actually a VoIP provider. The numbers in this article are corrected to reflect this.

Geography. Twilio’s number data also includes geolocation information for each number, which
shows our data is based in 30 countries. The United States has the most gateway controlled num-
bers with 147 numbers seen receiving 95,138 messages, the most traffic of any country. Conversely,

9We also include a more detailed approach to our clustering mechanism in this work.
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Table 2. This Table of Gateway Messages and Numbers by Country Shows that Gateways Have an
International Presence, with most Message Volume Taking Place in North America and Western Europe

Country Message Count  Number Count | Country Message Count  Number Count
United States 246,736 147 Belgium 5,253 3
Canada 139,045 72 India 5,064 2
United Kingdom 93,999 109 Hong Kong 4,597 11
Germany 93,561 75 Israel 4,325 9
Poland 68,777 18 Thailand 4,073 5
Russia 52,014 8 Switzerland 2,610 5
Norway 49,362 13 Austria 1,774 4
Spain 23,227 17 Finland 1,714 13
Sweden 21,485 24 Indonesia 1,201 3
Ukraine 19,929 3 Netherlands 982 1
France 19,218 23 Estonia 976 3
Romania 12,014 17 Ireland 526 4
Ttaly 10,617 5 Lithuania 520 1
Australia 9,763 20 Denmark 54 1
Mexico 6,880 6 Czech Republic 31 3

The message count represents the number of messages sent to numbers in each country.

Table 3. Using Twilio-provided Data, We
Obtained the Carrier Type for Each of the
Carriers Associated with Sender and Receiver
Numbers on the Gateways

Carrier Type Total Percentage of Total

Mobile 397 63.5%
VoIP 207 33.1%
Landline 21 3.4%

Lithuania only had one gateway-controlled number registered to it, the lowest of the countries in
our data. The Czech Republic has the fewest messages sent to the gateway-controlled numbers
registered to a country, with three numbers receiving only 31 messages.

Twilio data provides only the country of origin, so for all 219 numbers in the United States and
Canada we obtain caller ID name (CNAM) data.!” We found that the vast majority of numbers
(57.2%) have no CNAM data at all. Of those messages that have data, the official record in the
CNAM database is simply “CONFIDENTIAL,” “WIRELESS CALLER,” or “Unavailable.” Note that
“Unavailable” is the actual string that would be displayed to a user, not an indication of no data in
the database.

The remainder of the messages are sent to phone numbers that have CNAM data indicating the
number is in one of 57 cities or 3 provinces (British Columbia, Ontario, and Quebec) in the United
States or Canada. By message volume, the top locations are “Ontario,” followed by Boston, MA;
Atlanta, GA; Southfield, MI; Harrisburg, PA; Inverness, MS; Denver, CO; Oakland, CA. There are
several observations to make from these findings: first, numbers are selected to well beyond what
is likely the gateways’ main location. Second is that neither gateways nor users feel a need to use

19CNAM data only covers the U.S. and Canada.

ACM Transactions on Privacy and Security, Vol. 22, No. 1, Article 2. Publication date: December 2018.



Characterizing the Security of the SMS Ecosystem with Public Gateways 2:11

Table 4. We Separated and Labeled Each Cluster Containing
a code the Intent of the Message

Tag Messages % Tagged | Tag Messages % Tagged
otp-dev 95,685 33.4% info 2,339 0.8%
code 52,872 18.5% otp-dev-url 863 0.3%
ver 52,181 18.2% password 697 0.2%
conf 38,521 13.4% code-url 676 0.2%
otp 21,919 7.6% conf-ro 401 0.1%
pw-reset 3,602 1.3% otp-url 320 0.1%
ver-url 3,139 1.1% stop 284 0.1%
advertising 2,999 1.0% username 178 0.06%
pw-reset-url 2,696 0.9% conf-url 92 0.03%
test 2,612 0.9%

This table contains each of those labels and the number of messages in each, which total 74.2%
of the messages in our dataset.

numbers based in large population centers. With the exception of Centennial, CO, all locations
had five or fewer numbers, regardless of population of the location. Gateways 4 and 5 registered
the numbers in Centennial.

Clusters. From the clustering algorithm we described in Section 3.4, we found 44,579 clusters in
our initial dataset. All messages with more than 43 messages were manually tagged and analyzed
giving us 754 tagged clusters. These clusters represent the messages from the most popular services
that were found in this dataset. The tagged clusters only represent 1.7% of the total clusters but
the tagged clusters cover 286,963 messages (74.2%).

SMS Usage. As shown in Table 4, messages containing a code constitute the majority of our
dataset at 67.6% of the total messages, showing that a main usage of SMS in our data is verification
and authentication.!' Account creation and mobile device binding codes are the largest subcat-
egories with 51.6% of the messages. Compared to other messages containing a code, one-time
password messages are only 7.6% of messages. The URL variations for these code messages are
also rare, constituting only 2.6% of messages. This reflects that most services prefer to plain codes,
instead of URLs, which may not work well for older phones.

Password reset messages comprise 1.3% of our dataset. The corresponding URL version com-
prises another 1.0% of our dataset. Interestingly, these password reset URLs overwhelmingly con-
sist of Facebook reset requests.

Language. We also programmatically determined the language of the messages. We used
Google’s langdetect library to systematically tag each message with a predicted language if
the output had a confidence of 60% or greater. For this analysis, we removed any messages for
which the language could not be determined. These messages had low confidence value, were
too small to predict correctly, or did not contain any characters at all (e.g., “:),” “12345”). After
dropping such messages, we found a total of 51 different languages with the top 6 languages
(English, Russian, Portuguese, German, French, and Spanish) making up 80% of all messages.

11 As we note in the previous section, these percentages are reflective of gateway messages, and may not necessarily be
representative of broader SMS trends. Additionally, tagging messages is a manual process that takes large amounts of time.
As such, the numbers reflected on Table 4 are representative of our previous work (Reaves et al. 2016a) that contained 380k
messages.
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Not surprisingly, English messages made up 57% of the messages. Detecting the language gives
us a reasonable idea of geographical regions where public gateways are mainly used. We briefly
discuss how we use this information to track malicious activities later in the article.

We looked deeper into the 27,000 Spanish messages (the sixth top language), because several
authors are native or competent speakers. Here we found many VoIP service offering cheap calls
to different Latin American countries, and we noticed that most of these services were used to
call Cuba.

Finally, a few messages contain partial or complete usernames and passwords. These messages
are particularly egregious, because they may lead to account compromise and/or user identifica-
tion. We discuss this further below.

5 USES OF SMS AS A SECURE CHANNEL

In this section, we discuss what we observed about the security implications if any of the compo-
nents of the SMS ecosystem are compromised. We found messages capable of exposing financial
information, login credentials, and critical alert messages. Additionally, although the usage we
discuss in this section is benign, we observe the presence of low entropy in 2FA messages and PII
leakage, both of which are dangerous when available to an adversary in this ecosystem.

5.1 PIl and Other Sensitive Information

SMS has become a major portion of global telecommunications worldwide, and its use by com-
panies and other organizations comes as unsurprising. However, our dataset contained instances
of companies using SMS to distribute payment credentials or other financial information, login
credentials, and other personally identifiable information. We also see instances where gateways
are used for sensitive services.

Financial Information. We found several distinct instances of credit card numbers being dis-
tributed over SMS in our dataset. Two of these appear to be intentional methods of distributing
new cards, while another two appear to be the result of commerce. We discovered these using PII
regular expressions. We also discovered several instances of CVV2 codes in our data. CVV2 codes
are credit card codes meant to verify that the user is in possession of the physical card at the time
of purchase.

We found that two services that provide “virtual” credit card numbers to allow access to mobile
wallet funds distribute the numbers over SMS. These card numbers are “virtual” in the sense that
they are not backed by a credit line, but in fact seem to be persistent. The first service is Pay-
too, based in the United States. We recovered three distinct cards from this service, and additional
messages containing balance updates, account numbers and transaction identifiers. While pass-
word reset was handled over email, identifiers such as email, username, phone number, or account
number could all be used for login.

The other service is iCashCard, based in India. They distribute a prepaid credit card account
number over SMS; this card is protected by a PIN also distributed over SMS. Additional messages
contained a separate PIN that allows for account login with the phone number, meaning that access
to SMS reveals access to the entire payment credential and account.

We found an additional credit card number, CVV, and expiration value from an unnamed service
whose identity or purpose we could not identify. The message indicated that it was being sent to a
user who had purchased a “package” of some sort, and confirmed the purchase using the full credit
card number. Incidentally, the purchaser’s IP address was listed in the SMS, and that IP address
was placed in SANS blocklist for suspected bots and forum spammers.

Our PII regular expressions discovered one final credit card number present in a text message
sent to a Mexican phone number. The message contains a reference to a Venezuelan bank, the card
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holder’s name, and includes the credit card number, the CVV2, and the expiration date. To deter-
mine the context for this message, we examined other messages from this sender and found what
appeared to be an SMS-based mailing list for purchasing items on the black market in Venezuela;
items for sale included U.S. paper products (diapers, tissue), oil, and tires, as well as U.S. dollars at
non-official rates (Crooks 2015). Our best hypothesis for the presence of the credit card is that a
purchaser of an item mistakenly sent payment information to the list in place of the actual sender.
Nevertheless, this highlights that highly sensitive enterprises rely on SMS.

In addition to credit card information, we discovered one unidentified Polish service that in-
cludes a CVV2 code in their messages after registering for a prepaid service. Translated (by
Google), these messages read:

Thank you for registering on the
site prepaid. Your CVV2 code is: 194

The financial information in our gateway data is not limited to credit card numbers. We found
several instances of messages sent by a prepaid credit card provider in Germany, PayCenter (2015),
that distributes bank account numbers (IBANs) in SMS messages. The same provider also sends a
verification text to the user with a URL that includes the user’s full name.

The messages above indicate that some services unwisely transmit sensitive financial informa-
tion over SMS.

Usernames and Passwords. In scanning our labeled clusters, we identified several services that
would allow user accounts to be compromised if SMS confidentiality is lost. The most prominent
example of these is Canadian international calling provider Boss Revolution (2015). Their user
passwords are distributed via SMS, and usernames are simply the user’s phone number. Thus, an
attacker with read access to these messages can compromise an account. Another example was the
Frim messaging service (Frim 2015). That service also uses the user’s phone number and a pass-
word distributed over SMS. Other services distributing usernames and passwords in SMS include
eCall.ch (a Swiss VoIP provider) (eCall 2015) and RedOxygen (a bulk SMS provider) (RedOxygen
2015). Fortunately for users, most online services in our data do not distribute password informa-
tion through SMS.

Password Reset. Several organizations, including Facebook and the investment platform xCFD,
distribute password reset information via SMS in addition to or in place of other methods. The
most common password request in our data was for Facebook account resets. Upon investigating
these messages (using only our own accounts), we found that the messages contained a URL that
would allow a password reset with no other identifying information or authentication—not even
a name or username. This would allow any adversary with access to the message—either as it
transits carrier networks, the receiving device, or any other entity that handles the message—to
control the account. If the adversary has the username, then he/she could cause reset messages
to be sent for that account, allowing the adversary to take complete control of the account. This
highlights the consequences of a compromise of the SMS ecosystem.

Alert Systems and Status Reports. We also found some gateway-provided phone numbers were
being used to receive alert messages. These messages notified the phone number of important
content that may be time sensitive such as security alarms. To identify the alert messages, we
queried for an extensive dictionary of words that have a high likelihood of being present in alert
messages or reports (e.g., “warning,” “accident,” “urgent,” etc.). The messages found in this set had
various levels of user interactivity ranging from a simple notification update to the request of ac-
tion from the recipient. For example, we found security alert messages that implied that the lack
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of a response from the recipient caused a secondary course of action to be taken by the security
company. From the security system’s point of view, any confidential information sent to the pro-
vided number is assumed to go to the rightful recipient. However, since the gateway numbers are
public, the delivery of these messages publicizes the confidential information unbeknownst to the
security company.

In addition to the security messages, we also found status messages containing critical mea-
surements from a Biogas plant, which metadata indicated was located in Great Britain, though the
source number was partially masked by the gateway. Although the messages we found did not
give us enough information to accurately trace the individual plant, the publication of this type
of messages have been shown to leak vital information in other power plants (Hilt and Lin 2016).
The problem of these leakages can be traced back to the assumption of the phone network being
a secure and reliable medium through which the plant could send confidential information. It is
important to note that it is not just confidentiality that is a concern; SMS also does not guarantee
availability, timely delivery, authentication of either party, or integrity of the data. In fact, previ-
ous work (Traynor 2012) has shown that mass alert messages sent through SMS take hours, and
in some cases fail, to deliver the critical content. Having that in mind, mission critical messages
simply should not be sent through SMS.

Other Personally Identifiable Information. We found numerous examples of PII—including ad-
dresses, zip codes, and email addresses. Email addresses are worth noting, because the presence
of an email address indicating an association between a phone number an account could be used
to associate codes or other authenticators sent to that device to the particular account. Our PII
regular expressions identified 2,849 messages with emails—most of these were sent by 1ive.com,
gmail.com, inbox.ru, or pop.co (a hosting provider).

SMS Activity from Sensitive Applications. Finally, we noticed several instances where messages
appeared in the gateway from organizations whose very nature is sensitive. The worst among
these was the room sharing service Airbnb. One of our messages contained the full address of the
shared property (PII obscured):

Airbnb reservation reminder:
Jan 25-28 @ <address>.
<name>: <email> or <phone>

Although we suspect that the owner of the property listed it in such a way that this data was
revealed, the use of SMS gateways for these services is troubling as it could facilitate real-world
abuses.

Other examples of sensitive applications include a large set of registrations with other telecom-
munications services. These include popular phone services like Telegram, Viber, Line, Burner and
Frim. The presence of these services in gateway data may indicate the use of these gateways for
“number chaining,” a practice that allows PVA evaders to acquire a large number of telephone
numbers for free (Thomas et al. 2013). In addition, we see registration and activity in the gateway
data to a number of bulk SMS services. This may also indicate the use of gateway numbers to
obtain access to bulk SMS services for the purposes of sending spam.

5.2 SMS code Entropy

Our message dataset afforded us samples of codes sent by many services over SMS. These codes
provide valuable phone verification capabilities to services that wish to increase the burden of
obtaining an account (e.g., to prevent fraudulent account creation), and these codes provide a
glimpse into the security of the code-generation schemes. We grouped those clusters containing
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Table 5. The Results of Our Statistical Analysis of Authentication Codes
from Each Service

Service Effect Size (w)  Effect? = Mean Code

Circle 0.519 large 496,206

Google 0.762 large 559,252

Google 0.779 large 544,276 Service p-value Mean Code
Google 1.249 large 462,109 Alibaba 0.931 548,088
Hushmail 0.476 medium 503,494 Backslash ~ 0.324 556,223
Instagram 0.802 large 495,483  Baidu 0.006 502,144
Instagram 0.787 large 500,052 Beetalk 0.731 541,852
Instagram 0.655 large 498,085  Gett 0.391 5,503
Jamba 9.053 large 6,801 LINE 0.459 5,525
LINE 0.653 large 5,468 LINE 0.611 5,567
LINE 0.543 large 5,434 Origin 0.969 501,422
Microsoft 3.338 large 334,253 Origin 0.377 502,599
Odnoklassniki 0.585 large 434,079 Runabove  0.332 494,698
QQ 0.530 large 498,245 Skout 0.342 5,049
Talk2 1.611 large 5,717 Smsglobal ~ 0.802 5,502
Telegram 0.490 medium 54,906 Tuenti 0.939 5,062
Viber 3.001 large 388,336 Weibo 0.008 504,205
Wechat 0.506 large 4,958 (b) Uniformly Random codes.
Whatsapp 0.610 large 541,209

(a) Non-uniformly Random codes (p < 0.001).
Some services appear more than once in the data because their messages were split into multiple clusters (e.g., one for
password resets and one for logins).

codes by service and extracted the numeric code from each message. Overall, we extracted codes
from 33 clusters containing 232,999 authentication codes across 25 services, as shown in Table 5.

We first tested the entropy of each set of codes using a chi-square test. The chi-square test is a
null hypothesis significance test, and in our use case indicates if the codes are uniformly generated
between the lowest and highest value. The p-value less than 0.001 means that there is a statistically
significant difference between the observed data and an ideal uniform distribution. Only 13 of 33
clusters (39%) had p-values > 0.001. We also measure the effect size for each test, finding that
most effect sizes were large (w > 0.5) with only one medium (w > 0.3), indicating our statistically
significant differences were in fact meaningful. Finally, we confirmed that all tests performed had
a statistical power of 0.99 or higher, indicating that our test had a high likelihood of observing any
effect present.

Of the clusters, those belonging to the WeChat and Talk2 services had the least entropy of the
authentication codes we analyzed. Not only did both services have p-values of 0.0 in the above
chi-square test, the service’s codes each generate a specific pattern. We mapped the first two digits
of each code with the back two digits and show these two services’ codes in Figure 3.

WeChat. Until April 2015, WeChat’s authentication codes followed a pattern of rand() * 16
mod 10,000, which caused the grid-shaped heatmap in Figure 3(d). The pattern could be explained
by a random number generator with low entropy in the four least significant bits. This effectively
reduced the possible space of 4-digit codes to 625. In April 2015, WeChat changed its code gener-
ation algorithm. We excluded the the codes gathered before April and recomputed the chi-square
test. Although the new map shows like they use a better random generator, we still see the service
fail the chi-square test.

ACM Transactions on Privacy and Security, Vol. 22, No. 1, Article 2. Publication date: December 2018.



N
—_
[o)}

B. Reaves et al.

90 80 70 60 50 40 30 20 10 00
90 80 70 60 50 40 30 20 10 00
90 80 70 60 50 40 30 20 10 00

00 10 20 30 40 50 60 70 80 90 00 10 20 30 40 50 60 70 80 90 00 10 20 30 40 50 60 70 80 90

(a) WeChat 2016 (b) Talk2 2016 (c) LINE 2016

o
0

120

ront digts
50

ront digts

.
1200 1080 960 340 720 600 480 360 240

0 10 2 . 4 s e 70 8 9 0 120 240 30 480 600 720 840 960 1080 1200 0 10 20 3% 4 s 6 70 80 90
Back digts Back digis Back digts

(d) WeChat 2017 (e) Talk2 2017 (f) LINE 2017

Fig. 3. These figures present heatmaps of codes where the first two digits are represented on the y-axis and
the last two digits are represented on the x-axis. Darker values represent higher frequencies of a code in
our data. In the top row, which visualizes data from our first study, we see that WeChat and Talk2 present
an egregious lack of entropy in their authentication codes, while LINE generates random codes without
leading zeros. In the bottom row, which visualizes our newer data, we can see that WeChat changed the
code generation to include more possible values and Talk2 changed to generating alpha numeric codes. Our
statistical analysis showed that these changes did not result in uniforly randomly generated codes.

Talk2. This service has an extreme lack of entropy in its code-generation algorithm, as seen in
Figure 3(e). In particular, it appears to avoid digits 0, 1, 2, 5, and 8 in positions 1 and 3 of a 4-digit
code. We made several attempts to reproduce this entropy pattern, but we were unable to produce
a reasonable explanation for the reduction in entropy.

After March 2016, Talk2 changed their code generation from a four digit code to a four character
alphanumeric string (e.g.,“4KXT” instead of “1234”). We were able to get a sufficient sample size
to map these new codes to base 36 (10 digits plus 26 letters) and rerun the chi-square analysis test
separately from the previous codes. As before, this new method implemented by Talk2 did not
pass the random uniformity test. We generated a heatmap for these codes, but were not able to
explain the non-uniformity.

Google. While the Google codes we harvested did not appear to be uniformly-random in our
experiments, this appears to be caused by duplicate codes. When requesting that a code be resent,
Google will send the same code again. This practice is potentially problematic, because it indicates
that the Google codes have a long lifetime. Since messages on gateways may be accessible for
weeks or months, it may be possible for an adversary that can identify the associated account to
use an unclaimed code. Without access to the associated accounts, however, we were unable to
determine the exact lifetime of Google’s codes.
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Fig. 4. Users often request a code multiple times for the same use (e.g., login), so many services cache this
code and resend instead of generating a fresh code. This figure shows that overall the likelihood of sending an
identical code falls sharply after 10min, so we exclude identical codes sent within 10min from our randomness
measurement.

LINE. Although our experiments show LINE’s codes are likely uniformly generated, the ser-
vice does not generate codes with a leading zero, reducing the overall space of codes by 10%.
This practice is common among our clusters, with 13 total clusters exhibiting this behavior. For
comparison, we display LINE’s codes in Figure 3(f).

During our collection period, we frequently found identical codes appearing during the same
time frame. This was due to services sending duplicate messages rather than generating new codes
from scratch. In our previous study (Reaves et al. 2016a), these repeated codes had the potential
to bias our statistics in favor of considering a code distribution to be non-uniform. In this study,
we excluded duplicated codes that have been collected within 10min of each other because of
the high likelihood these codes were simply duplicate messages. Figure 4 shows that the bulk of
duplicate codes were sent within 10min of each other (hence our choice of time limit for that
value). While this revised analysis computed slightly different results for our data, we still found
that many online services still use a poor random number generator.

In addition to the entropy analysis, we also checked if the services had complied with NIST’s
deprecation of SMS-based authentication. To do so, we checked the date of the last message re-
ceived from each cluster. Our dataset stopped finding messages for 15 clusters during our collection
period (9 from before the recommendations were made public and 6 after the release). We manually
checked through different messages and security policies and found that all but three services still
support SMS two-factor authentication. Of the three services, we were not able to find information
that indicated whether or not the services stopped supporting SMS authentication. Accordingly,
we see that the NIST recommendations are not being followed and our data provides no reason to
believe this will happen in the near future.

5.3 Takeaways

In this section, we explored the data that is exposed in the SMS channel for benign purposes.
This is problematic if an adversary has access to SMS messages, as is the case with the gateways.
We observed services that expose sensitive user data via SMS including financial data, account
information, password reset URLs, and personal information such as physical and e-mail addresses.
We then found that 65% of services that use SMS to deliver codes generate low-entropy codes,
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Fig. 5. (a) Only 37% of gateway-controlled numbers are used after one month. The median number lifetime
is only 24 days. (b) The skewness and kurtosis of number lifetime indicates that 60% of messages have a
significant skew towards heavier use at the beginning of the lifetime, while the kurtosis indicates that these
numbers see a sharp increase in activity followed by steep decline. (c) 60% of numbers used show a strong
tendency for heavy use in the early lifetime of the number.

which may be predictable and grant unauthorized access to accounts. The design of such services
is guided by an assumption that the SMS channel is secure from external observation, and our
observations show that this results in poor security design in those applications. Last, during our
collection period, NIST deprecated the use of SMS as an authentication method (Grassi et al. 2016).
However, we continued to see messages containing authentication codes from various services.

6 ABUSES OF SMS

Having explored how services attempt to use SMS as a secure channel, we now discuss what we
observed about the security implications and evidence of abuse related to gateway activity. This
includes phone verified account evasion, failed attempts at location anonymity, whether similar
gateway numbers can be detected, spam, and the global reach of malicious behavior. Additionally,
we apply predictive analytics to the the various SMS activities we have discussed throughout the
article.

6.1 Gateways and PVA

In this subsection, we discuss the relevance of our data to phone-verified accounts (PVA). In par-
ticular, we present evidence that the primary activity of the gateways we observe is evading PVA
restrictions, and that existing countermeasures are ineffective.

Message Activity Statistics. In Section 4, we noted that more than half of the messages received
by gateways are related to account verification. This vastly outweighed any other purpose of send-
ing SMS. Beyond this information, message activity statistics also support this claim. The median
number lifetime (the time from first message to last) in our dataset is 24 days, and the CDF of
number lifetime is shown in Figure 5(a). This lifetime is fairly short, and in fact 62.3% of numbers
do not even last a full billing cycle (31 days).

There are two likely explanations for the short lifetime: one is that services that facilitate PVA
need to replace their numbers often as they exhaust their usefulness to create new accounts. The
second is that many of these numbers are in carriers (especially mobile carriers) that shut off num-
bers for anomalous message volume. These explanations are not necessarily mutually exclusive.

To gain insight onto this question, we computed the daily volume of messages for each phone
number used by a gateway, and we call this series the “daily activity” of the number. If these
numbers were being primarily for personal messages or informational activities (like signing up
for advertising alerts), then we would expect the daily activity of the number to be fairly constant
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Fig. 6. These maps visualize the sender phone number locations of all messages (a and c) sent to the gateways
and the locations of users that have clicked shortened URLs (b and d) for the first and second year. Overall,
the locations of the gateways’ users significantly differ from the services sending messages, implying the
primary purpose of these gateways is PVA fraud.

across the lifetime of the number, or for there to be a “ramp up” period as new users discover the
new line.

Instead, we see almost the exact opposite behavior. To concisely express this, we computed
skewness and kurtosis statistics of the daily activity of every number. Simply, kurtosis is a statistic
that indicates if a series is “flat” or “peaky,” while skewness indicates whether a peak falls closer
to the middle, beginning, or end of a series. A skewness of between (-1, 1) indicates the peak falls
in the middle of the series, while a positive skewness indicates a peak that arrives “earlier” in the
series. We plot the skewness and kurtosis for every number in Figure 5(b). Note that we reverse
the x-axis, so that the further left in the plot a number falls, the “earlier” its peak.

Figure 5(c) shows the CDF of the daily activity skewness, and we observe that approximately 60%
of numbers have a skewness towards early activity. This implies that most numbers have a high
message volume early in the lifetime, and consequently, most of the activity of the number has been
completed by the time it is shut down. If carriers are disabling numbers (for exceeding a message
rate cap, for example), then they are doing so well after most numbers have seen their peak use.
Likewise, if online services are considering a number invalid for phone verification (e.g., multiple
accounts with the same phone number), they are still permitting a high-volume of registration
requests for a number (in aggregate) before blacklisting.

User Location Leakage. Some gateways advertise their services for users that are seeking privacy
or anonymity. Although SMS does not provide these properties, the use of a gateway may provide
a sense of anonymity for a user registering for a service. Shortened URLs (often provided in space-
constrained SMS messages) leak information about the user clicking the link to the URL-shortening
service. With the statistics we collected from these services, we have identified both the source and
destination countries for each message, we also found that the users of these services are located
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Fig. 7. These maps visualize the sender phone number locations of all messages (a and c) sent to the gateways
and the locations of users that have clicked shortened URLs (b and d) for the first and second year. Overall,

the locations of the gateways’ users significantly differ from the services sending messages, implying the
primary purpose of these gateways is PVA fraud.

in significantly different locations. We do not attempt to deanonymize, track, or identify any users.
Our data consists solely of publicly-available aggregate click statistics.

The number of clicks recorded ranged from all shortened URLs found range from 0-4,995,788
with a median of 8. This data represents any click to these URLs, not just those from the gateway
pages. As a result, to prevent skewing our data with popular URLs and spam messages, we focused
on URLs with <10 clicks, since many incoming links expected by users of SMS gateways are likely
clicked a small number of times. We collected the countries associated with each of the remain-
ing clicks and aggregated the results. Figure 7 shows the total clicks for each country across all
shortened URLs.

We split our dataset into the messages included in our previous study (Reaves et al. 2016a) and
the new messages gathered after that study to measure changes in long-term location trends. As
before, we collected both the location of the source phone number and the click statistics of the
links for the new messages. To ensure that the click metrics are reflecting the period of when
they were gathered, and not the clicks of the previous study, we computed the Jaccard similarity
of both sets and only found a 0.12% similarity, indicating that these two sets of URLs are largely
disjoint.

In Figures 7(b) and 7(d), we can see that the click metrics obtained from URL shorteners indicate
that gateway users are coming from more countries than before. We note that the color intensity
of both maps are relative to the individual dataset graphed, and as such, comparing color intensity
does not fully capture the traffic changes. We analyzed the raw figures and found that on year
two, there were 29 new countries while 12 countries were no longer available. Additionally, of
the countries that were available in both years, 9 showed a decrease in traffic by over 50%. The
churn in countries shows us a volatile user base of the recipients of gateway messages. While the
gateway user base comes from a more diverse set of countries, if we compare the location of the
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sender’s phone number of each message found in both years (Figures 7(a) and 7(c)), we actually
see fewer countries sending messages, especially in Southeast Asia. Although the locations of
messages and users have changed, the central finding in our initial study that messages and the
users that consume them are in different countries remains true.

6.2 Detecting Gateways

As we have discussed above, these gateways facilitate PVA evasion and the demographic data we
can obtain about the users of these services clearly shows usage patterns consistent with PVA
fraud. It is clear that in most cases even reputable well-funded online services are not success-
fully defending against these gateways. Although number lifetimes are short, the sheer volume
of verification messages in our data indicates that evasion is still an effective driver of profit for
gateways.

PVA evasion is not new to online services. In particular, Google is acutely aware of this problem,
having published a paper on the topic (Thomas et al. 2014). In that paper, Thomas et al. propose
several strategies to detect PVA evasion. They include blocking irreputable carriers, restricting
how quickly numbers can verify accounts, and phone re-verification. In this section we explore
the recommendations in that work and discuss how our data shows that these recommendations
are unlikely to be effective:

Carrier Reputation. While we only see one of the carriers identified as abuse-prone in Thomas
et al. (2014) (Bandwidth), blacklisting blocks of numbers by carrier would not stop all PVA eva-
sion. Carrier-based blocking is prohibitively expensive for all but the largest of organizations. We
obtained Twilio data for each number in our data set and although the cost was relatively small
($0.005/1ookup), scaling this (and additional number metadata such as CNAM and HLR data) to
cover all of a business’ customers represents a substantial cost. Furthermore, this kind of bulk
blacklisting is difficult to enforce in the face of gateway services that maintain a large pool of
numbers over many carriers. Online services that attempt to restrict the speed at which numbers
can be reused for new accounts face an arms race against gateways.

Phone Reputation. One option suggested in Thomas et al. (2014) for determining phone rep-
utation is to create a service that shares abuse data between service providers. Although there
is little information about how such a service could be created, we considered that it might be
possible to blacklist abusive numbers if they are similar to each other.

We conducted a self-similarity analysis against the phone numbers in our dataset to determine
how numbers are purchased. If they are purchased in bulk, then it may be possible to detect them.
We analyzed all of the gateways’ numbers to determine similar numbers using Hamming distance.
We found that most carriers use similar numbers (i.e., those with a Hamming distance of two or
less), and the results are shown in Table 6. Over 40% of all of a gateway’s numbers were similar in
6 of 8 gateways, however we found that most of these repeated numbers are in mobile carriers, not
VoIP, as shown in Table 7. The data shows that the gateway numbers are in the carriers that are
most likely to serve legitimate users, so attempting to block these numbers may result in a high
false positive rate. Furthermore, as shown in Table 6, we reexamined this analysis a year later to
see if previous trends still hold true. We find only a marginal decrease in average number simi-
larity (from 43.7% to 41.3%), so blocking similar numbers would still result in a high false positive
rate.

Phone Re-verification. Phone number re-verification would fail if the number were checked
again outside the expected lifetime of a gateway number. Thomas et al. (2014) saw a median num-
ber lifetime of one hour, a reasonable point to perform a re-verification. In our dataset, however,
we have seen that half of all gateway numbers last up to 24 days. Therefore, re-verification at any
interval is unlikely to be universally effective, since phone number longevity is not guaranteed.
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Table 6. We Analyzed the Numbers from Each Gateway for Similarity in Both Studies

Before After
Site Similar/Total Percentage | Similar/Total Percentage
[1] receive-sms-online.info 15/59 25.4% 33/129 25.6%
[2] receivesmsonline.net 16/38 42.1% 18/55 32.7%
[3] e-receivesms.com 7/14 50.0% 7/19 36.8%
[4] hs3x.com 28/57 49.1% 63/110 57.3%
[5] receivefreesms.com 52/93 55.9% 62/134 46.2%
[6] receivesmsonline.com 38/93 40.9% 59/138 42.8%
[7] receive-sms-online.com 8/19 42.1% 12/32 37.5%
[8] receive-sms-now.com 20/48 48.0% 26/61 42.6%
Overall 184/421 43.7% 280/678 41.3%

Finding that on overage, over 41% of numbers are similar in both years.

Table 7. An Analysis of the Similarity of Gateway Numbers
Shows that the Majority of Numbers are in Mobile Carrier
Number Blocks, not VolP as We Expected

Before After
Carrier Type | Similar/Total Percentage | Similar/Total Percentage
Mobile 159/184 86.4% 213/250 85.2%
Landline 5/184 2.7% 12/250 4.8%
VoIP 20/184 10.9% 25/250 10.0%

As aresult, attempting to block these number blocks may result in high false positives. After
collecting more data over time, we still see a similarity in mobile phone numbers.

6.3 Abuse Campaigns in SMS

Since gateways accept unsolicited messages, often do not filter messages, and are subject to users
providing these numbers to various services, our data contains SMS from SPAM campaigns, phish-
ing campaigns, and even one black market, as discussed in Section 5.1. In this section, we will
discuss these campaigns.

6.3.1 Spam Campaigns. Our spam analysis used two approaches to identify spam. The first
approach uses the clusters identified as spam that we previously generated and manually classified
in our original study (Reaves et al. 2016a). The second approach is based on developing a machine
learning-based automatic spam classifier (Reaves et al. 2016b).

Cluster Analysis. With this method, we found 1.0% of tagged messages across 32 clusters
related to advertising. Upon manual inspection none of these appeared to be solicited messages,
so we consider these to be spam messages. Of the advertising clusters we identified, 15 are UK-
based financial services (e.g., payday loans, credit lines) from 14 numbers. Five are for distinct bulk
messaging services. These services advertise gateways and the ability to avoid phone verification:
“Using our service to create and verify accounts without your own phone number.”

Another six clusters are from a specific job staffing site and appear to be bulk messages related
to a job search. Curiously, these messages contain a name and zip code. We expanded the search
beyond the labeled clusters and found 282 messages in 107 clusters. These messages may be related
to this organization testing their bulk SMS APIL. All of these messages were sent to a single gateway
number within a seven-hour timespan, which is unusual when compared to other bulk message
campaigns in our dataset.
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Fig. 8. This map shows the density of spam messages transiting through public gateways based on the
source phone numbers.

We were surprised at the low spam volume observed in public gateways, as they market them-
selves as a service for avoiding spam. This has been a major topic of research, but the volume of
spam traffic in our dataset is lower than previously measured (Delany et al. 2012; Skudlark 2014).

Spam Classifier. To get a better representation of the actual spam present in our dataset, we
used the method proposed by Reaves et al. (2016b) to classify spam. This method works by using
a support vector machine (SVM). To extract features, it uses a simple binary vector to indicate the
presence of certain words that may relate to spam. This method can classify spam with a precision
and recall rate of 100% and 96.6%, respectively. This method tagged 2.4% of all the messages as
spam. We use these more comprehensive results for the following subsection.

6.3.2  Spam Transiting Through Public Gateways. In total, we identified over 22,000 spam mes-
sages in our dataset, and an important question is where these messages come from. While we
used Twilio’s Lookup service for our previous analysis of gateway-owned phone numbers, the
sheer volume of messages and Twilio’s per-number fee structure made using that service imprac-
tical. Instead, to better understand the geography of these messages, we made use of the fact that
in the United States it is possible to identify a source city directly from the phone number itself.
Specifically, the first six digits of a phone number identify both the area code and the central of-
fice that serves a call. For example, numbers of the form 305-200-XXXX are based in Miami. The
mapping of phone number prefix to location is known as the North American Numbering Plan
(NANP) and is maintained in a public database by the North American Numbering Plan Adminis-
tration (NANPA). We note that this method is not perfect; numbers that send spam can be ported
or spoofed entirely. We believe this issue to be minimal, because spam in many cases has an in-
centive to not spoof (e.g., to receive replies) or to spoof a number local to the target. As a result,
this analysis still provides useful insights into spam behavior.

In Figure 8, we show how spam present in public gateways transit through the United States. As
expected, spam is mostly proportional to the population density of large cities and metropolitan
areas. The central office with the most spam transiting through it is located in Riverside, California.
Most of the messages transiting through this central office were attempting to advertise available
jobs.

Case Study: New York City. Large cities are usually managed by multiple central offices to ac-
commodate the large subscriber density. When we looked at the source phone numbers of the
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Table 8. The Amount of Malicious URLs Marked
Positive by VirusTotal for All Languages that Had
More than 1,000 Unique URLs

Language Malicious URLs ~ Unique URLs Percentage

Russian 56 1,011 5.4%
English 782 36,614 2.1%
Ttalian 14 1,051 1.3%
French 18 1,513 1.1%
Norwegian 15 1,249 1.1%
German 27 3,098 0.1%

spam messages in these cities, we saw that New York City had 58 unique numbers sending spam.
As a comparison, most cities saw fewer than 20 unique numbers that sent spam. Out of those 58
unique numbers sending spam from New York City, 24 were handled by a single central office.
The messages from the numbers in this central office were diverse in content indicating multiple
spam campaigns. We saw that, on average, other central offices hosted one or two numbers that
contained messages from spam campaigns. Based on the spam messages transiting through public
gateways, New York City has the most diverse targets and diverse content distribution of spam
out of the metropolitan areas in the United States.

We also looked at the service providers of these numbers to see if we can use this information to
better detect spam flow. The spam phone numbers sending spam were distributed among multiple
service providers. However, the service provider with the most phone numbers used for spam was
Level 3 Communications with around 14% of all the numbers. As a comparison, the next highest
service provider only accounted for half of that amount (7%).

As mentioned earlier, 2.4% of all messages in our dataset were classified as spam. This figure
does not tell us anything about the changes that spam messaging may have in the 28-month span
of our collection period. Therefore, we compared the volume of spam found in the original study
and in the messages that followed. We found 11,193 spam messages (2.88%) in the first study and
11,010 spam messages (2.15%) in the data collected in the 14 months following the first study. This
very small change in spam volume indicates that our original findings of spam volume have been
stable and show no strong indicators of broader change during our study period.

6.3.3 Link Analysis and Malicious Behaviour. Another empirical measure of the maliciousness
of the URLs is scanning these URLs with security products. VirusTotal provides one such measure
by requesting scans from multiple products. The results from VirusTotal returned 1393 URLs with
at least one detection. Only 6 URLs had 5 detections, and no URL had more than 5 detections. Of
these detections, 958 were detected as “malicious site,” 738 as “malware site,” and 64 as “phishing
site.”

We further filtered the URLs to analyze how susceptible a language community is to malicious
activities based on infected URLs found in the messages. To do this, we clustered the messages
by language and extracted all of the unique links from each language. If a link was present in
more than one language, then we included that link in the statistics for each language where it
was present. A link was recognized as malicious if at least one scanner from VirusTotal returned a
positive result. Although we collected results for all the languages found in our dataset, in Table 8,
we only show the results for languages that had over 1,000 unique URLs. We do this because we
do not have enough unique samples to make strong claims for the other languages. For example,
we found that Swahili had the highest malicious activity rate at 15.3%, but we cannot claim this to
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Fig. 9. SMS behaviors (black and blue) in public gateways are stationary and have a strong correlation to
the amount of available numbers in a given month (red).

be representative of the actual language community, because the sample size was only 13 unique
links.

From the languages present in Table 8, English had an order of magnitude more infected links
that any other language. However, due to English being used as the primary language for many
services, we see that malicious links only account for 2.1% of the unique URLSs for this language.
We noticed that many of the links found here were used for one-time confirmation, verification,
and password resets. Furthermore, we found URL messages sent in the Russian language had the
highest probability of containing malicious content: 5.4% of URLs in that language. We found that
at least one of these seemed to be trying to spread an Android APK file while impersonating IBMs
Security Trusteer Rapport, software that “helps prevent malware and phishing attacks that are the
root cause of most financial fraud” (IBM Security Trusteer Rapport 2016).

Overall, abusive messages (spam, phishing, and malware) comprised only a small portion of our
dataset, despite being billed as a major problem in popular press. This is especially strange given
that evasion of spam is something many of the gateways advertise, as we discussed in Section 3.
Given previous reports on the pervasiveness of SMS spam, we believe that some entity in the SMS
ecosystem is performing adequate spam filtering and that this problem may no longer be as severe
as it once was.

6.4 Predictive Analyses

Throughout the article, we measured various behaviors of the SMS ecosystem. In this section, we
look into predicting future trends based on the monthly time series of messages gathered. These
trends include available phone number volume, message volume (i.e., total count and code mes-
sages), and abuse volume (i.e., spam and malicious links). We find that while all trends examined
are likely stationary (stable) over our observation time period, short term predictions based on
prior activity are not accurate.

In Figure 9, we show the aggregate monthly count of each of the time series. Qualitatively, we see
that each studied behavior seems to be influenced by the amount of available phone numbers for
each time period. As such, predicting the availability of phone numbers can provide information
about the other behaviors of interest. To verify, we set @ = 0.05 and evaluated the Spearman rank
correlation coefficient of the available phone numbers to all measured SMS behaviors'? and found

12pearson correlation is not applicable, because none of the time series mentioned above follow a normal distribution.
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a strong positive monotonic correlation (p > 0.60) for all compared series (p < 0.001). This insight
means that models that predict available phone numbers should also work for predicting these
other behaviors.

Before making predictive models for such behaviors, we first need to determine if the monthly
available phone numbers series is stationary or non-stationary. As such, we used the Augmented
Dickey-Fuller (ADF) test with @ = 0.05 and determined that the available numbers series is sta-
tionary (p = 0.028). This tells us that the publication of phone numbers from the public gateways
do not follow a certain trend nor dependency on seasonality.'®

Finally, since the time series was stationary, we looked into future short term predictions using
ARMA models for the available phone numbers. Unfortunately, there are many variables in the
publication of phone numbers in the public gateways that are unknown to us, making the ARMA
model a bad month-to-month predictor.

While we can not predict month-to-month behavior of these time series, the fact that these
series are stationary implies that we should expect gateways to operate at the same volume of
numbers, messages, and associated abuse for the foreseeable future.

6.5 Takeaways

In this section, we explored malicious uses of the SMS channel. First, we discussed how our data
shows the prevalence of PVA evasion due to the stark contrast between gateway number locations
and locations of users interacting with the gateways. We then discussed the difficulty of detecting
gateways with carrier blocking due to cost and number lifetimes. Next, we explored abuse cam-
paigns via SMS and found that spam, and suspicious URLs are infrequent, which may indicate that
SMS filtering at the gateways and in the network are sufficient. Finally, we found minimal changes
were made to the SMS ecosystem during the 28 months of our data collections. This last finding
indicates that previous problems are still present in the SMS ecosystem.

7 RELATED WORK

Prior measurement work has studied the underground economies (Thomas et al. 2015) that drive
spam (Kanich et al. 2008, 2011; Thomas et al. 2013), malware (Stone-Gross et al. 2009; Cho et al.
2010; Grier et al. 2012) and mobile malware (Felt et al. 2011; Zhou and Jiang 2012; Lever et al. 2013),
and other malicious behavior. While others have investigated SMS content and metadata in the
context of SMS spam (Murynets and Piqueras Jover 2012; Tan et al. 2012; Jiang et al. 2013; Narayan
and Saxena 2013), this work is the first to expansively measure how SMS is used for security pur-
poses by legitimate services. We note that much of the research in this area has been forced to
rely on small datasets (some less than 2,000 messages (Narayan and Saxena 2013)). Mobile two-
factor authentication is increasing in popularity, with some eagerly heralding its arrival (Atwood
2012) and others cautioning that it may only provide a limited increase in security (Schneier 2005).
Much of the data we collected contained mobile two-factor authentication tokens sent over SMS.
While SMS tokens are popular in many contexts, including mobile banking and finance (Reaves
et al. 2015), other approaches have been implemented in a variety of forms including keychain
fobs (SecurID 2015; IdentityGuard 2015), one-time pads (Leyden 2008; SiPix Imagining, Inc. 2006),
biometric scanners (Stensgaard 2006; CardTechnology 2007), and mobile phones (Aloul et al. 2009;
DeFigueiredo 2011; Duo Mobile 2015). Analysis of individual systems has led to the discovery of
a number of weaknesses, including usability concerns (Adham et al. 2013) and susceptibility to
desktop (Konoth et al. 2016) or mobile malware (Castillo 2011; Koot 2012; Mulliner et al. 2013;

13We note that we also used the ADF test with o = 0.05 for all other time series and determined that each series was also
stationary (p < 0.01).
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Koenig et al. 2013; Dmitrienko et al. 2014; Eide 2015). SMS-based tokens are especially vulnerable
to link-layer attacks against the cellular network. These networks use vulnerable channel encryp-
tion (Biryukov et al. 2001; Barkan et al. 2007; Dunkelman et al. 2010), allow end devices to connect
to illicit base stations (Ahmadian et al. 2009; Golde et al. 2012; Dabrowski et al. 2014), and are vul-
nerable to low-rate denial of service attacks (Traynor et al. 2007, 2008, 2009). However, the majority
of the infrastructure behind many two-factor authentication systems—the portions of the system
outside the cellular network—has not been previously explored from a security perspective. Ad-
ditionally, while end-to-end SMS encryption schemes exist to prevent content exposure (Saxena
and Chaudhari 2014; Saxena et al. 2018; De Santis et al. 2010), such precautions become ineffective
when one endpoint is either compromised or is willing to publicize the content of the messages
(e.g., public gateways).

Dmitrienko et al. were among the first to examine SMS messages to study security of two-
factor authentication schemes (Dmitrienko et al. 2014). We greatly exceed the scope of their work
in five important ways. First, our work presents a comprehensive examination of the entire SMS
infrastructure—from online services to end devices. Second, we focus on how online services use
SMS well beyond two-factor authentication. Third, our data includes two orders of magnitude more
services and we identify and classify the intent of each message. Fourth, we provide a more detailed
classification of two-factor authentication systems. Finally, our more rigorous entropy analysis of
two-factor authentication PINs allow us to make strong claims for more than 30 services (instead
of just 3), helping us to find egregious entropy problems in the popular WeChat and Talk2 services.

Our emphasis on phone verified accounts provides a separate contribution. Thomas et al. study
the effects of phone verified accounts at Google (Thomas et al. 2014). While they use datasets of
purchased or disabled PVAs, we provide insight into PVA fraud from enabling services. While we
confirm some of their observations, our data indicated their recommendations may prove ineffec-
tive at defeating PVA evasion.

8 CONCLUSIONS

Text messaging has become an important part of the security infrastructure. However, this ecosys-
tem has evolved significantly since its inception, and now includes a wide range of devices and
participants external to traditional cellular providers. Public SMS gateways directly embody this
change and allow us to not only observe at scale how a range of providers are implementing se-
curity solutions via text messages but also provide us evidence of how assumptions about SMS
are being circumvented in the wild. While our data may not fully encompass all communications
sent over SMS, our measurements identify a range of popular services whose one-time messaging
mechanisms should be improved, and additional entities who may be creating new opportuni-
ties for compromise by sending highly sensitive data (e.g., credit card numbers) via these chan-
nels. On the abuse side, we see the ease with which these gateways are being used to circumvent
authentication mechanisms, and show that previously proposed mitigations to PVA fraud such
as block banning are unlikely to be successful in practice. These measurements indicate that all
providers relying on SMS as an out of band channel for authentication with strong ties to a user’s
identity should reevaluate their current solutions for this evolving space. However, we find no
discernible changes were made to the SMS ecosystem during our collection period; this suggests
previous problems are still persistent.
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