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Abstract—Modern hospital systems are complex environments
that rely on high interconnectivity with the larger Internet.
With this connectivity comes a vast attack surface. Security
researchers have expended considerable effort to characterize
the risks posed to medical devices (e.g., pacemakers and insulin
pumps). However, there has been no systematic, ecosystem-wide
analyses of a modern hospital system to date, perhaps due to
the challenges of collecting and analyzing sensitive healthcare
data. Hospital traffic requires special considerations because
healthcare data may contain private information or may come
from safety-critical devices in charge of patient care. We describe
the process of obtaining the network data in a safe and ethical
manner in order to help expand future research in this field. We
present an analysis of network-enabled devices connected to the
hospital used for its daily operations without posing any harm
to the hospital’s environment. We perform a Digital Healthcare-
Associated Infection (D-HAI) analysis of the hospital ecosystem,
assessing a major multi-campus healthcare system over a period
of six months. As part of the D-HAI analysis, we characterize DNS
requests and TLS/SSL communications to better understand the
threats faced within the hospital environment without disturbing
the operational network. Contrary to past assumptions, we find
that medical devices have minimal exposure to the external
Internet, but that medical support devices (e.g., servers, computer
terminals) essential for daily hospital operations are much more
exposed. While much of this communication appears to be benign,
we discover evidence of insecure and broken cryptography and
misconfigured devices, and potential botnet activity. Analyzing the
network ecosystem in which they operate gives us an insight into
the weaknesses and misconfigurations hospitals need to address
to ensure the safety and privacy of patients.

I. INTRODUCTION

Modern medical systems are digital, networked, and com-
plex. From operations and finance to clinical departments,
virtually every facet of a contemporary healthcare organization
relies on interconnectivity with the wider Internet. Such con-
nections bring with them significant benefits, from the ability
to access patient records wherever they are needed to being
able to incorporate revolutionary treatments as they become
available. These systems hold the potential to improve quality
of care while reducing patient costs and unnecessary therapies.

Much of this rise in connectivity can be attributed to

the building of medical applications atop commercial off-
the-shelf (COTS) systems and networks. As such, healthcare
organizations have been able to rely upon much of the same
expertise used in other industries to reap the advantages of
“smart” devices and fast networks. This modernization has
been rapid and has fundamentally transformed the way that
healthcare is delivered in the developed world. However,
connection to the larger Internet has come with notable risks.
Like other systems relying on COTS components, hospital
systems also inherit a large number of publicly disclosed and
zero-day vulnerabilities [16], [22], [17]. Malware designed to
send spam [33] and encrypt critical files for ransom [32] have
already been found on machines within hospital networks,
taking advantage of unpatched operating systems and weak
security practices. Even devices long considered immune to
compromise by nature of their isolation from other systems
such as pacemakers and insulin pumps now allow remotely
controlled malicious behavior [20], [28], [29]. All of these
problems are amplified by unclear standards, resulting in the
device manufacturers failure to fix vulnerable software for fear
of requiring FDA safety reviews [24].

There is no doubt that medical systems have vulnerabilities.
However, these individual examples and anecdotes fail to paint
a broad picture of the current state of affairs because we lack
a systematic, ecosystem-wide analysis of a modern healthcare
system.

In medicine, Healthcare-Associated Infection (HAI) refers
to the possible infections a patient may receive as part of
the treatment they need while in a hospital. Our case study
follows a similar goal but focuses on Digital Healthcare-
Associated Infection (D-HAI). D-HAI can be described as
either the characterization of health-related day-to-day traffic
from network-enabled devices that are connected to the hospi-
tal network or the exposure to potential malware infection in
their daily operational use. As the first such study, we focus on
characterizing the hospital network traffic to assess its security
as a whole rather than looking for specific signs of device
infection. Critically, such an analysis must be done without
posing any potential harm to the hospital environment as it
operates. We make the first such characterization in this paper,
and in so doing make the following contributions:

• Assess a Digital Hospital Ecosystem: We perform
the first Digital Healthcare-Associated Infection (D-HAI)
analysis on a major, multi-campus healthcare system. Our
analysis captures traffic from across this system from
January-July, 2018.
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• Provide Guidelines for Ethical Research: We explain
our process and limitations of obtaining data from the
hospital network in order to facilitate future academic
research in studying this field in an ethical manner.

• Categorize and Evaluate Outgoing Traffic Requests:
We collect and evaluate over 775 million DNS requests
made from the hospital network. We show that traditional
whitelisting and blacklisting efforts used to analyze the
Internet do not cover a significant amount of traffic found
in a hospital ecosystem. Additionally, while the majority
of traffic appears to be benign, there are indications of
malicious traffic within the network (e.g., potential botnet
activity).

• Characterize Security of Encrypted Communications:
We measure and evaluate the state of TLS/SSL communi-
cations based on our collection of 325 million handshakes
across the hospital network. While we observe many
positive trends (e.g., lower use of vulnerable versions
of TLS/SSL compared to the larger Internet), we also
record significant use of broken/deprecated cryptographic
primitives and handshake modes, and some evidence of
misconfigured devices.

While there are similar studies to this paper of various
enterprises, no prior study has been done in a hospital network.
The sensitive nature of this environment requires special care
to ensure that our study is both ethical and safe to perform. As
a case study, we discuss the two year process to bring together
all of the necessary stakeholders to ensure that our study never
threatened patient privacy or safety. While this process posed
limitations and delayed our ability to conduct our study, we
believe that it was an absolutely critical component of our
efforts. We hope that other researchers will be able to follow
a similar process in order to conduct an ethical and safe
investigation in critically-sensitive environments.

The remainder of the paper is organized as follows: Sec-
tion II gives a background on the network protocols studied
and a topology of a hospital; Section III details the processes
we undertook to ensure an ethical and safe study; Section IV
explains our methodology and outlines the datasets; Section V
shows our analysis of connection requests made by medical
devices; Section VI focuses on the communication channel
of medical devices; Section VII discusses our limitations
and future work; Section VIII highlights related work; and
Section IX offers concluding remarks.

II. BACKGROUND

A. Hospital Networks

To provide timely patient care on a daily basis, hospitals
rely on the availability and the infrastructure of their network.
A hospital’s network poses many unique challenges that other
commercial networks may not. A major problem is that many
devices throughout the network (mobile or stationary) need
to have broad access to patient data at any given moment.
Each device is thus a potential attack vector as even one
infection could result in unauthorized access to thousands
of personal records. Such leakage of data is not limited to
just financial and personally identifiable information, but also
health and diagnostic information not found elsewhere. While
network-wide issues (e.g., DDoS attacks or outages) might

create downtime and monetary losses to commercial-driven
networks, such issues can potentially be life-threatening in a
hospital setting. During such events a device used for patient
care or the diagnostic information of a patient could become
inaccessible.

Devices within the network include MRI machines, med-
ical beds, surgical robots, and many other IP enabled med-
ical devices. These critical devices must follow regulatory
guidelines including FDA approval [24] and HIPAA compli-
ance [30]. In addition to those unique devices only found in a
hospital, other devices such as printers, accounting computers,
and doctor’s laptops make up a large portion of the network.

B. Network Protocols

Our study involves traffic from two networking protocols:
DNS and SSL/TLS. We chose DNS because it allows us to
see the domains being visited by devices within the network
without revealing additional information that may compromise
the privacy of those connections. SSL/TLS were chosen for
this study because they are the most widely deployed security
protocols.

The Domain Name System (DNS) maps human-readable
domain names (e.g., www.domain.com) to machine-
readable IP addresses (e.g., 1.2.3.4) among a range of data
types. DNS is separated into organizationally-controlled zones
that are arranged in a hierarchical structure, with each zone
having information about itself and links to the sub-domains
beneath it [39]. Zones in DNS are named based on their
position within the hierarchical structure: www.domain.com
would have a top level domain (TLD) of .com, and second
level domain (2LD) of .domain, etc. On occasion, the
effective second level domain (e2LD) is used to signal the
canonical name of the domain (e.g., google.co.uk) since
registration is only allowed at the third level and below.

The response of a DNS request is sent via resource records
(RR). Passive DNS records can indicate that a device inside
a network has attempted to resolve the address of a known
malicious domain. While the request alone does not imply
that the device is necessarily compromised or malicious, it
may warrant investigation of the device itself [11].

Once DNS provides a method for devices to find each
other on the Internet, the Secure Socket Layer (SSL) protocol
and its modern successor, the Transport Layer Security (TLS)
protocol, provide a cryptographically secure communication
channel between them. To establish a secure connection with a
server using SSL/TLS, a client must first validate the identity
of the server it is communicating with.1 To do so, a server
presents the client with an X.509 certificate containing the
server’s identity and signature. Certificates are issued by one
of a number of Certificate Authorities (CAs) that assert the
server’s identity. It is up to the client to track which CAs it
deems trustworthy; if the CA that issued the server’s certificate
is trusted by the client, then the client validates the X.509
certificate and begins secure communication with the server.

Many versions of both protocols have been deprecated and
deemed insecure for various reasons, ranging from susceptibil-

1It is possible, but less common, for the server to also validate the client’s
identity.
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ity to downgrade attacks to the use of insecure cryptography.
At the time of writing, the current acceptable protocol standard
in use is TLS 1.2; however, early implementations of TLS 1.3
are already being deployed [27].

III. DESIGNING AND EXECUTING AN ETHICAL STUDY

Designing this study required legal, institutional, regula-
tory, and self-imposed limitations to protect the safety and
privacy of the hospital. There have been multiple papers
published in the security community over the last decade that
have caused significant discussions about ethics. While these
papers are often cleared by the university’s Institutional Review
Boards (IRBs), the implications of the work are often not clear
to these approval boards. The resulting papers clearly push the
boundary of community norms and are published “asking for
forgiveness instead of permission.”

Such a cavalier approach is not possible in our setting.
In addition to the potential to violate patient privacy and run
afoul of the law (e.g., HIPAA in the United States), studies of
medical ecosystems must also ensure that they do not interfere
with patient care or safety, nor the anonymity of the hospital
workers. Accordingly, we must make sure that our study by
design minimizes any potential for such a negative impact.

Achieving these ends has taken over two years of planning
and effort. Prior to presenting a detailed study to our IRB,
we met with legal counsel for both our university and the
hospital system. We then worked in conjunction with IT staff
from both organizations to determine the feasibility of any
requested analysis and its potential impact. We also provided
such information to our funding agency.

A. Design Process and Limitations

Agreeing to the details of our study required multiple
rounds of discussion with stakeholders. In particular, the legal
team and hospital IT staff requested more specificity from our
original proposal regarding the following issues:

Limiting traffic source collection: We were required to select
only data sources that pose low risks to the hospital. More
importantly, we needed to ensure that private information of
the patients or hospital workers was not present in this case
study. Data coming from traffic payloads, packet captures, or
protocols that may contain unencrypted information, such as
HTTP (containing usernames, passwords, or paths to files)
or P2P protocols, were forbidden as they had a high risk
of containing private information. Additionally, the hospital
deemed the collections of DHCP to carry a moderate risk
as this data can be used to track or deanonymize hospital
workers. Similar studies in the future must carefully identify
the potential risk of each traffic type before collecting them
and must coordinate with the potentially impacted parties.

Ensuring undisrupted daily operations of the hospital: We
also needed to perform our case study in such a way that
the hospital’s daily operations would not be interrupted. For
example, active analysis or active probing of network-enabled
machines could have revealed a more thorough characterization
of hospital devices (e.g., determining the services running on
a device). However, adding probing traffic to devices with
low resources could accidentally bring them down and thereby

hinder the hospital’s daily operations. As such, the legal team
deemed the use of network scanning tools such as nmap or
Nessus to have a high risk of interfering with daily operations
and thus were not used as data sources in our case study. Future
research in this area needs to be mindful of which devices can
be scanned without overloading them with extra traffic.

Eventually, all parties agreed to a limited and purely
passive analysis of the network. The analysis focusing solely
on DNS and TLS/SSL traffic could be conducted without
risking patient privacy or safety and would allow meaningful
characteristics to be extracted. For DNS, we only focus on the
IP address information returned and no other information such
as email routing or additional domain names that allow for
reverse IP lookups. This leaves an unknown amount of traffic
unseen by our study, which could affect the results. However,
we consciously accept this limitation to preserve the privacy
and daily operation of the hospital.

These requirements give us access to significant amounts
of data in a protected fashion. For instance, patient data such
as electronic medical records are unlikely to be captured
in this configuration, nor are we capable of impacting the
availability of any device due to unexpected probing. However,
these requirements also create important limitations. Whereas
previous studies of networked environments are able to con-
duct in-depth analyses of specific machines or users [49], we
were not able to do so. While appropriate in the case of an
enterprise environment, our prioritization of privacy and safety
forbid such analyses. We attempted to compensate for these
limitations and mitigate threats to external validity by using
public sources of data [10], [19], [21], [35] to provide ground
truth for our observations.

After all requirements were met and agreed upon, data
collection started and was conducted by both the hospital staff
(i.e., hospital traffic) and our team (i.e., OSINT information
to complement collected data). The hospital traffic collection
process was handled entirely by the hospital. While letting us
set up the collection mechanism would allow us more freedom
in getting extra information, it is critical for the hospital to take
care of this step. This way any information shared with us
was pre-filtered to meet their privacy requirements. However,
after seeing the exact fields that were being collected from the
monitoring tool, the hospital did not require extra pre-filtering
steps. Additionally, since the data gathered would be purely
passive, we did not add extra traffic load (e.g., active probing)
to hospital devices.

B. Disclosure of our Findings

In our community, it is standard practice for researchers
to notify the impacted/responsible parties of any issues found
during research. Besides the limitation posed by the legal
team and IRB, we also agreed with the hospital to report any
concerning findings to them in a timely fashion. Our agree-
ment with administrators entailed one-way communication in
the reporting of issues. Our responsibility was to report any
possible vulnerabilities, but it was up to the hospital staff to
take actions (without needing to report back to us). While this
limiting agreement was specific to our study, it was necessary
to establish a relationship built on trust so that we can perform
future research beyond this case study. Additionally, we agreed
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to keep the identity of the hospital anonymous for confiden-
tiality. As such, to disseminate our analysis, we first allowed
the hospital staff to look at our work and suggest fixes where
needed. The report we present purposefully abstracts results in
a way that reveals the minimum amount of information about
the hospital while maintaining meaningful results. A similar
agreement could be made by other researchers that wish to
examine hospital security.

We believe that the careful design of our experiments,
the inclusion of legal and IT professionals from all parties,
and the strict requirement for limited passive techniques were
necessary for conducting a safe and ethical analysis of the
hospital. While our case study gives us an insight into a
large healthcare ecosystem, generalizing the results to other
hospitals may constitute a threat to population validity as
many unknown variables may have affects on the analysis
(e.g., size of the hospital, funding available). As we discuss
further in Section VII-B, arranging such study a requires the
collaboration of multiple administrations. However, we hope
that this work and the guidelines suggested can aid future
researchers in designing similar ethical experiments.

IV. METHODOLOGY

Our research focuses on performing a D-HAI analysis.
Before explaining our methodology, we first need to distin-
guish medical devices from medical supporting devices. In the
context of our work, a medical device has direct contact with
the patient while they are inside the hospital (e.g., MRI ma-
chines, hospital beds). Conversely, medical supporting devices
aid in patient care but do not necessarily come in direct contact
with the patient (e.g., laptops, computer terminals, databases).
Both sets of devices are essential in the daily operations of a
hospital.

Prior research examined the security of specific medical
devices for possible vulnerabilities [25], [28], [29]. However,
while medical devices are connected to the network and may
be vulnerable, we found in our analysis that network admin-
istrators use multiple mitigation techniques to isolate these
devices. For example, the vast majority of medical devices
are locally connected to aggregation points. Access to such
aggregation points is extremely limited even from within the
network (e.g., limited VPN access to the aggregation points).
Additionally, much of the prior work has shown attacks on
medical devices happening on the first-hop communication
(i.e., wireless channel) rather than communication in the net-
work. In other words, from the network’s perspective these
medical devices are mostly invisible2 to other devices inside
the network, let alone the wider Internet. As such, much of the
hospital’s exposure to malicious activities comes from medical
supporting devices, rather than medical devices themselves.
This observation is extremely important to note because it tells
us that while previous research in the medical device security
field is important, it does not necessarily address the attack
surface that a hospital may present. This case study is meant
to complement previous literature in medical device security.

2There may be a few exceptions, such as MRI machines, that may require
an Internet connection for updates from the manufacturing company.
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Point

Medical Devices
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Fig. 1: Illustration of the typical topology of network-enabled
medical devices (e.g., MRI machines, hospital beds) and
medical supporting devices (e.g., laptops, computer terminals,
mobile devices).

A. Hospital Traffic

The modern hospital system we studied, which is represen-
tative of many modern hospital environments, is comprised of
a partnership between a hospital and an academic research
center (e.g., a university). Collaborating with academic re-
search centers allows for various research opportunities that
benefit both sides. While access to electronic health records
(EHR) is limited in the academic research center and admin-
istration/security standards might differ between networks, we
decided to include traffic from both networks in our study since
they have access to private health records. For the rest of the
paper (and for simplicity), we define hospital. to include both
the hospital itself and the academic research center that has
access to private data.

It is common for hospitals to offer public WiFi, but in
several cases (including ours), this is a different physical
network than the ones used for medical and medical supporting
devices. As such, traffic coming from the public network was
not analyzed as it would not be representative of the hospital’s
ecosystem

To analyze traffic from all devices in the hospital network,
we partnered with an anonymous multi-campus, state-wide
hospital. Hospital IT staff deployed and configured the Bro
Network Security Monitor (version 2.5.2) [41] on our behalf.
Our instance aggregated data at a single point in the net-
work trunk that connects the hospital to their Internet service
provider (ISP) (shown in Figure 1). From this vantage point
within the network, we are able to see all ingress and egress
traffic to the hospital network regardless of which campus
it originates from. We collected DNS requests, TLS/SSL
sessions and resumed handshakes, and X.509 certificates for
a period of six months, from January 1st to July 1st, 2018.
Traffic was passively collected to avoid disturbing or probing
any devices in the network. Our monitor was placed in a
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location allowing us to see traffic from the hospital’s external
and internal IP addresses before being remapped by network
address translation (NAT) for outside use.

Throughout our collection period, we were in constant
communication with hospital administrators and reported any
anomalies or malicious activities we found. Unless explicitly
stated, all DNS analyses in the paper are evaluated using A
and AAAA requests.3 From this data, we are able to see both
medical and medical supporting devices.

B. Ground Truth

We also collected data from public sources in order to
compare the hospital’s traffic to the rest of the Internet. Due
to the lack of prior data with which to compare our hospital
data, we establish a ground truth for benign DNS traffic by
gathering the daily lists of the top one million domains from
Alexa [10] and OpenDNS [19]. Traffic rankings found in
these lists are reflective of popularity by how many users
throughout the Internet have requested information about them.
Our assumption is that we can use the most popular domains
as a whitelisting source because user-generated traffic would
tend to query suspicious websites less often than those found
in the top domain rankings. Additionally, we use both of
these lists to better understand how a hospital’s traffic might
differ from Internet traffic as a whole. We used the Alexa
top sites list because it is widely used for whitelisting [12],
[36] and provides a popularity ranking more sensitive to
effective second level domains (e2LDs) (e.g., example.com
and google.co.uk). By being sensitive to e2LDs, the
Alexa top list represents the largest entities (e.g., service
providers) on the Internet accurately, making it ideal for
rating certificates. The OpenDNS top one million list, in turn,
provides a more sensitive popularity ranking of e2LD’s sub-
domains (e.g., analytics.domain.com). This makes the
OpenDNS dataset a more accurate representation of the largest
services used on the Internet and is thus ideal for ranking our
DNS data. Our goal is to be conservative with our whitelisting
definition. As such, we used the top 100,000 domains (rather
than all sites) of OpenDNS as a way to whitelist traffic found
in the DNS data.

Conversely, to create a ground truth list of malicious traffic,
we crawled six different publicly available blacklists.4 While
no blacklist is complete, we believe that the combination of our
sources gives us a reasonable basis for classifying ill-intended
Internet traffic. These data sources include domains that have
been tied to malware, phishing, or other traffic thought to
be malicious. Combining these blacklists, however, engenders
some challenges. First, some blacklists contain false positives,
which can happen when reputable domains are reported for
various reasons (e.g., advertising) that are not necessary ill-
intended. Usually, if such requests get the reputable domain
added to the blacklist, it will only remain for a short time.
However, those domains would still appear in our dataset since

327.4% of the data had Null as its record type. We manually inspected the
data and concluded that these queries should have been labeled A or AAAA.
These records have been kept in the dataset used in this paper. Additionally,
while data can be encoded inside a DNS request, we observed no such activity
in regards to PII exposure.

4We collected data from Phishtank [6], Zeus Tracker [7], MalwareDo-
mains [4], Dshield [2], and OpenPhish [5].

we keep track of all added domains. To fix this issue for
our analysis, we manually removed any domain that appeared
in our whitelist described above from the malicious traffic
found in the blacklists. Additionally, DNS domains that belong
to content distribution networks (CDNs) are problematic for
these blacklists. CDNs will redirect traffic to multiple sites
and will be added to the blacklists if a domain it serves is
used maliciously. Since we do not know if the domains used
by the CDN were malicious at the time of query, we removed
them from our analysis to be conservative with our results.

While we set a ground truth for DNS traffic, we also need
to establish a baseline for the hospital’s TLS/SSL commu-
nications. As no such baseline exists, specially for hospital
networks, we collected weekly data from Censys [21], a plat-
form that scan the entire publicly accessible IPv4 address range
and collects information from various protocols. Over 97%
of TLS/SSL traffic from the hospital goes to TCP port 443.
Accordingly, to get a control population for communications
and cipher usage, we specifically looked at traffic scans to TCP
port 443 of Internet devices found on Censys.

Finally, we collected certificates from Certificate Trans-
parency (CT) logs [35]. These are public append-only logs that
keep track of all certificates presented to them. The logs are
constantly updated with new certificates, making them tamper-
evident: it is difficult for certificates to be issued without
alerting either the domain owner or clients. Additionally, the
logs are both monitored and publicly auditable, allowing any
user to check their integrity at any time. We use the certificates
collected from the CT logs to check for mis-issuance of X.509
certificates.

V. DNS ANALYSIS

During our collection period, we collected over 775 million
DNS queries to over 17.2 million unique Fully Qualified
Domain Names (FQDN). The responses of these queries
returned over 2.5 million distinct destination IP addresses. The
collected raw data comprised over 179 GBs. In this section, we
analyze the DNS data and compare it to the OpenDNS dataset
and blacklisted traffic to characterize potentially malicious
behavior.

A. General DNS Behavior

We conducted an analysis on the top 100 e2LDs present in
both our dataset and the OpenDNS data. We chose to analyze
only the top 100 domains because this analysis was conducted
manually in order to determine affiliation and role of every
domain. To accurately assess the role of every domain, we
resolved it and then categorized it as either entertainment,
service related, or hospital related. The top 100 domains
account for over 60.98% of the traffic in our dataset.

Shared Top Domains: Overall, the top 100 domains from
our dataset and the OpenDNS dataset had 36 domains in
common. Domains that fell into this category included large
entertainment domains (e.g., netflix.com), search engines,
and large services such as microsoft.com that are likely
used by the hospital. These shared domains accounted for
approximately 31% of the total traffic in our dataset. We had
initially expected to see a larger overlap between the top sites
from the hospital and OpenDNS. However, upon observing our
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own top e2LDs it became clear why there is a large deviation
between the two datasets.

Infrastructure Domains: 36 of our dataset’s top e2LDs were
directly related to the hospital. These domains were either
controlled by the hospital itself, large-scale service providers
employed by the hospital (for services including security, anti-
virus, data analytics, etc.), or directly intended for use by
medical providers (e.g., the National Institutes of Health’s
domain nih.gov). Overall, infrastructure related-domains
generated 18.6% of the total traffic in the network.

Other Unshared Top Domains: The healthcare-specific do-
mains were a part of a larger set of 64 domains that were
present in the hospital’s top domains but not in the OpenDNS
dataset. The non-infrastructure domains accounted for 11.3%
of the total traffic in our dataset. The other domains that
were not affiliated to healthcare were predominately con-
tent distribution networks, software provider domains (e.g.,
mozilla.com), smaller entertainment domains, or various
regional domains. We believe that these sites simply represent
the unique subculture and demographic makeup of the hospital
system which we were studying. We do not go into any
further detail about these domains to prevent deanonymizing
the hospital which we observed.

By comparing the hospital network’s top domains to the
top domains of the Internet at large, we observe the hospital
network significantly deviating in several ways. From this
D-HAI analysis, we saw that the top domains for medical
supporting devices contained a large quantity of services that
are directly related to the hospital’s functions. Additionally,
we saw a large number of domains that were associated with
anti-virus and network security providers. More interesting
are the services that were not present in our dataset. Overall
it appears that medical supporting devices interact with en-
tertainment domains, cloud providers, and non-work related
domains less than the Internet at large. While expected, we
believe this is still worth mentioning for the following reason:
given the sensitive nature of medical records, having a limited
domain footprint decreases the likelihood of a computer being
compromised through a web browser via a drive-by download
or malicious JavaScript.

B. Traffic Categorization

As part of the D-HAI analysis, we categorized our data
into three sets in order to contextualize it. Our data is divided
into whitelisted, blacklisted, and unknown categories. In total,
we categorized 502, 051, 633 requests or 64.78% of the DNS
traffic as whitelisted. The traffic that was whitelisted came
from 119,117 (0.69%) unique FQDN that were associated to
29,085 (1.68%) distinct e2LDs. From these values, we can
see that on average each e2LD has 4.09 unique FQDNs (e.g.,
mail.domain.com is an FQDN of domain.com) associ-
ated with it. We categorized 84,669 requests or 0.01% of the
traffic queries as connections to blacklisted domains. Overall,
the blacklisted traffic was intended for 2, 483 unique domains
across 2, 281 unique e2LDs. Unlike the whitelisted domains,
it appears that blacklisted domains have a lower association
rate between unique FQDNs and distinct e2LDs. On average,
an e2LD in our blacklisted dataset has approximately 1.08
FQDNs associated with it.
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Fig. 2: Each category of domain is divided into five divisions
based off the number of FQDNs that associated to each e2LD.
We observe that domains found in our unknown traffic regu-
larly have a higher amount of self-association than blacklisted
domains. This gives us reason to believe that the majority of
domains with the unknown category are more similar to those
in the whitelisted category and therefore benign.

We believe this occurs because reputable domains are more
likely to want to reuse their e2LD for multiple sub-domains.
By doing so, reputable domains can easily pass on their
reputations to their sub-domains. Unlike reputable domains,
malicious domains do not wish to pass their reputation to
newer sites and are thus more likely to change their e2LDs
frequently. This is illustrated in Figure 2, which shows the
average number of sub-domains for each e2LD within a certain
subset of that category. The categories are divided into subsets
by the number of FQDNs that are associated to each e2LD.
For example, the N > 2 subset contains only those e2LDs
that had at least 3 unique FQDNs associated with it. If we
assume our whitelisted and blacklisted categories are accurate
representations of benign and suspicious traffic, then we can
gain some perspective on the unknown category through the
same analysis.

We can use this same technique to characterize ma-
licious behavior in the unknown category of domains. In
total, the unknown category contains 271,363,949 unique
requests or 35.02% of the total traffic. These connections
went to 17,186,699 (99.72%) distinct FQDNs across 1,721,311
(99.76%) e2LDs. On average, e2LDs in the unknown category
are associated with 9.98 unique FQDNs. This rate of self-
association makes the unknown category appear to be less
malicious. However, this category had a long tail of FQDNs
(72.4%) that were only queried once. 93.9% of the domains
had under 10 total queries targeting them. When we look at
the traffic distribution as it relates to e2LDs, queries that had
more than 50 requests accounted for only 4.64% of our total
e2LDs but over 85.03% of the traffic in the unknown category.
In fact, some of the most visited domains in our dataset ended
up in the unknown category.

While the above metrics tells us that the distribution of
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queries is highly concentrated to a few e2LDs, it does not give
us insight into how we should categorize the queries. To see
if unknown traffic is indeed behaving similarly to whitelisted
traffic, we collected all e2LDs present in our whitelisted traffic
and checked if the unknown category also had those e2LDs
present. In the case of an e2LD collision, we mark the query as
benign due to self association. By examining these collisions,
we mark almost half (45.25%) of the unknown traffic as
benign. This occurs because many services tend to use one
time DNS requests to encode information (e.g., anti-virus
services). While the service’s e2LD may be part of the top
100,000 domains, the one-time DNS request will not be.

Finally, after removing the e2LD collisions of the unknown
queries, only 19.17% of the hospital’s total traffic remained
in the unknown category. After manually checking the top
e2LDs, the remaining traffic appears to be predominately
comprised of domains useful to the hospital’s operations.
These include domains internal to the hospital, outside services
(e.g., customer relations management), and software that was
purchased by the hospital for daily healthcare operations (e.g.,
payroll and administrative). This is consistent with the previous
subsection’s analysis of the hospital’s top 100 domains. Al-
though we cannot claim that all traffic categorized as unknown
is universally benign, it appears that the majority of it is.

While the effectiveness of blacklists/whitelists for the open
Internet are still unknown, this shows that blacklists and
whitelists used to categorize Internet traffic may miss large
amounts of traffic seen in healthcare networks. We believe
that hospital medical supporting devices and their networks
could benefit from more customized whitelists and blacklists
for domains specific to the hospital. Given our limited visibility
into the internal network, we are unable to perform this
analysis here.

C. Potentially Malicious Behavior

While investigating the DNS data, we found several
signs of potentially malicious activity. Specifically, we looked
for known botnet command and control (C&C) channels,
as well as spam networks and other known malicious
actors. We used a curated list of known entities from
emergingthreats.net collected on April 3 and July
30, 2018. This list contained several categories of threats
including IP addresses for the Feodo and Zeus botnets, spam
nets identified by SpamHaus, and the top attackers listed by
DShield. We compared this list to our full dataset. We found
5, 552 connections to IP addresses that were members of the
emergingthreats dataset. When we looked for when these
queries were made, there appeared to be no discernible pattern
throughout our collection period. This is concerning given the
highly sensitive data that medical supporting devices access.
However, further analysis is needed to determine whether or
not our concern is warranted.

Of the threat categories contained in the
emergingthreats list, only IP addresses related to
Zeus and Feodo were found in the hospital network traffic.
In addition, only 0.0007% of the total traffic in our dataset
was related to potential bot activity. While the low volume of
potential activity appears reassuring, the fact that any exists
is still concerning as DNS data does not reveal additional

communication occurring over other protocols. The low rate
of bot activity could represent false positives generated by
misclicks, temporal artifacts of the emergingthreats list
(e.g., a site visited months before or after it was deemed
malicious), or collisions caused by CDNs. We were not
able to confirm the intent of these queries from our network
vantage point, but we notified system administrators of our
findings.

The vast majority of bot activity seen was related to Zeus,
accounting for over 94.78% of potential bot queries. The
connections were made to 1, 722 unique FQDNs associated
with 1, 514 distinct e2LDs. Interestingly, all the domains in
our botnet traffic resolved to just 37 unique IP address. The
top 3 IP address had 540, 341, and 308 different e2LDs
associated with them, accounting for over 77% of unique
e2LDs observed. On further investigation, we found that two
of the three IP addresses were controlled by domain hosting
sites. The last IP address was for a traffic redirection site for
Internet advertisements. While these services may have once
hosted malicious activity, we have no indication that they are
still actively malicious.

D. Summary

The DNS analysis highlights several aspects of the ob-
served hospital network. First, the top domains that traverse
this network are substantially different from those of the Inter-
net at large. The traffic indicates that the majority of domains
visited on the network are related to the hospital’s healthcare
role, thus shrinking the network’s attack surface. While the
hospital may benefit from whitelists and blacklists intended
for general use on the Internet, this type of categorization
misses a large section of domains specifically related to the
hospital (e.g., their AV service) and a more domain specific
categorization method would greatly benefit the community.
Additionally, there were detectable, albeit small, signs of
malicious actors in the network. While our analysis was not
conclusive with regards to their benign or malicious activity,
administrators should be concerned that these actors represent
potential threats to the hospital network and could lower
the network’s overall ability to provide patient care if left
unchecked.

VI. TLS/SSL COMMUNICATIONS

Because hospital networks contain EHRs and other per-
sonal identifiable information (PII), secure communication is
important for ensuring the integrity and confidentiality of such
data. DNS requests tell us from whom the medical supporting
devices are requesting information, but provide only a limited
view of the security of their communications. To broaden
the scope of the D-HAI analysis, we also collected quality
metrics for TLS/SSL sessions we observed. In particular, this
section focuses on the protocols and cipher suites negotiated
in established sessions, as well as certificates presented by the
server in fresh (non-resumed) sessions. The vast majority of
sessions (97.66%) involved no client certificate authentication,
as is expected. The conclusions in this section uses the Censys’
data as a baseline, which reflects the server’s preference of
TLS/SSL establishment parameters.
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Fig. 3: Number of handshakes for each TLS/SSL protocol.
TLS 1.2 usage is at least an order of magnitude greater than
any other protocol version.

A. TLS/SSL Usage

We observed approximately 325 million TLS/SSL estab-
lished handshakes during the six month data-collection period.
Figure 3 provides a summary of handshakes classified by
protocol: TLS 1.2 made up the vast majority of the traffic, com-
prising 87.88% of all observed handshake attempts; TLS 1.0
was the second most used at 10.33%, and TLS 1.1 was the
third most used at 1.78%. The remaining 0.01% consisted of
TLS 1.3,5 DTLS 1.0 and 1.2, and the deprecated SSL 2/3
protocols. The connection rates were highest for (D)TLS 1.2
and TLS 1.0, in which the majority of handshakes completed.
The majority of handshakes did not complete for all other
protocols.

Our data covers all established TLS/SSL connections that
passed through the hospital network. We found that over 97%
of connections were made using TCP port 443; thus, we cre-
ated a baseline by using the IPv4 scans of TCP port 443 found
on Censys (Section IV-B). The scans indicate that 76.61%
of servers on the Internet prefer TLS 1.2; 20.90% prefer
TLS 1.0, 1.59% prefer 1.1, and only 0.89% prefer SSL 3.6
Interestingly, of all inbound and outbound connections, the
rate at which TLS 1.2 (87.88%) is actually used by devices
within the hospital network is significantly higher than the
proportion of servers on the Internet that prefer this protocol.
Unfortunately, the above metric is not a one-to-one comparison
because it is not possible for us to get all traffic from all the
Internet servers. However, looking at this metric gives us a
good idea of how medical supporting devices are behaving in
regards to preferred communication methods. This indicates
that the rate of TLS 1.2 usage is likely higher among sessions

5The TLS 1.3 protocol was an Internet draft during the data-collection
period. Compliant implementations of this protocol indicate which draft is
being used; we observed only draft 18.

6The Censys baseline also contained a negligible number (< 0.001%) of
connections referring an “unknown” protocol.

in our network than the Internet at large. (We cannot say
for sure, since the Censys data is limited to server scans.)
Another positive observation is that the rate at which TLS 1.0,
which is vulnerable to POODLE downgrade attacks [40], is
negotiated (10.44%) is significantly lower than the baseline.
From these results, we can see that medical supporting devices
in the network we observed make use of secure protocols more
frequently than the rest of the Internet.

B. Cipher Suite Quality

On top of the TLS/SSL protocol analysis, we also looked
for the cipher suite negotiated in each connection involving
medical supporting devices. To measure the overall cipher
quality used in these connections we assigned each negotiated
cipher to one of four categories:

• Secure. The session uses strong primitives with no known
attacks: AES-GCM or ChaCha20+Poly1305 for encryp-
tion, ephemeral (EC)DH for key agreement, ECDSA or
RSA for authentication, and SHA2 or higher for hashing.

• Weak. The session uses strong primitives, but there is a
known attack against it: sessions using CBC-mode for
encryption are vulnerable to the “Lucky 13” attack [8], a
sophisticated variant of the “padding-oracle” attack [46]
that recent versions of TLS are designed to mitigate;
and sessions using RSA encryption for key transport
are vulnerable to ROBOT [17], a modern variant of
Bleichenbacher’s attack against PKCS#1 v1.5 [16] that
allows an adversary to break the confidentiality of a TLS
session.

• Insecure. The session uses one or more insecure primi-
tives: we observed the RC4 stream cipher [38], the 3DES
block cipher [14], and the SHA1 hash function [44] in
wide use.

• Broken. The session has effectively no practical security:
the DES or export-grade primitives used for encryption,
the “null” cipher, resulting in no encryption at all, anony-
mous Diffie-Hellman (DH), which permits a trivial man-
in-the-middle attack, and the broken MD5 hash function.

In Figure 4, we show the overall cipher quality for each
day of our collection period. The cycles seen in this figure are
due to weekday and weekend traffic patterns for the hospital
workers. Throughout our collection period, the cipher quality
appears to be relatively stable. However, by our measure
of quality only 53.21% of the sessions are deemed secure;
19.61% are weak, 27.08% are insecure, and 0.11% are broken.
While the cipher quality for connections appears to be stable
throughout our collection period, all secure cipher suites were
exclusively negotiated using TLS 1.2 or higher. This suggests
that as deprecated protocols disappear, the frequency of secure
cipher negotiations will be higher.

1) Hash Functions: The high number of insecure sessions
is due to the continued use of the SHA1 hash function during
the handshake. We expect to see SHA1 in wide use since it
was deprecated just last year [44]. However, we also expect its
usage to decrease over time as servers do routine updates. As
shown in Figure 5, no such trend is observed during the six
months we collected data. As evidence of this observation, we
performed an Augmented Dickey-Fuller (ADF) test. This is a
null hypothesis test that checks if a time series is stationary
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Fig. 4: Quality of cipher suites used in TLS/SSL sessions by medical supporting devices. The volume of sessions established
with non-secure cipher suites appears to be stable throughout our collection period.

or non-stationary. We set α = 0.05 and determined that the
SHA1 usage for medical supporting devices is stationary (p <
0.0001). This indicates that SHA1 is likely to remain in use for
the foreseeable future perhaps as long as TLS 1.2 remains the
most used protocol of servers. We expect its use to decrease
as TLS 1.3 enters wide adoption.

We also looked for the use of other cryptographic hash
functions both by medical supporting devices and the Internet
at large (Figure 5).7 First, we note that the broken MD5 hash
function is almost completely phased out from TLS/SSL com-
munications as connections made with this hashing algorithm
make up less than 1.5% of daily sessions in both datasets.
Next, we looked at the percentage of SHA2 variants: SHA256
and SHA384. With respect to hashing, the biggest discrepancy
between medical supporting devices and the Internet is due to
SHA384 as it appears to be nonexistent in the Internet (less
than 0.01%) while making up 25.93% of the daily established
sessions for medical supporting devices. To determine how
many sessions use a secure hashing algorithm, we must add
all daily sessions made using SHA256 and SHA384 for both
datasets (though secure, SHA512 was not found in either
dataset). From this addition, we determined that medical
supporting devices use secure hashing more often than other
Internet devices (a difference of 10.82%). This higher rate may
be attributed to a combination of factors ranging from the
browsers used by medical supporting devices being updated
more frequently to hospital networks having stricter policies.
Finally, we note that no connections were established using
the SHA3 hash function in both datasets. SHA3 represents the
most modern development in hash function design [13].

2) Forward Secrecy: A session is said to be forward secret
if a key compromised in the current session does not permit

7We note that for this study, we resampled the Censys baseline data to
summarize two weeks, rather than one, due to a small sample size in mid-
February.
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Fig. 5: Percentage of daily connections using various hashing
algorithms. In total, medical supporting devices show an
average of 72.84% secure sessions (SHA256 and SHA384
combined) while the baseline only accounts for 62.02% secure
sessions. Interestingly, while SHA384 is used in about 25%
percent of daily communications in a hospital, it only makes
up 0.01% of the baseline.

an adversary to decrypt prior sessions between the two parties.
Sessions that use ephemeral DH have this property; resumed
sessions, or sessions that use static DH or RSA for key
transport do not. In the context of medical supporting devices,
forward secrecy is a desired property because it limits the
possible exposure of data traversing the hospital to a single
session as opposed to multiple (e.g., EHRs transferred over the
network in multiple connections). Overall, 81.14% of sessions
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Traffic TLS/SSL Versions Cipher Suite Negotiated

Fig. 6: Breakdown of established connections. We say the version is secure if (D)TLS 1.2 or higher was negotiated, since secure
cipher suites were only negotiated in these protocols. The quality of the ciphersuite is categorized according to our criteria in
Section VI-B.

for medical supporting devices were found to be forward
secret. On the other hand, only 72.3% of servers scanned by
Censys prefer a cipher suite that is forward secret; depending
on the rate of resumption of sessions on the Internet at large,
this may indicate a higher rate of forward secrecy among
sessions in our network.

3) Broken Ciphers: Only 0.11% of the sessions used a
broken cipher suite. While the percentage is low, these account
for 351,105 sessions that have no security against an on-path
adversary. Below, we highlight the more significant findings.

First, we found that 0.08% of sessions used the
TLS_RSA_WITH_RC4_MD5 cipher suite in TLS 1.0. These
use RSA for key transport and authentication, RC4 for en-
cryption, and MD5 for hashing. We regard this as broken
because MD5’s weaknesses permit the adversary to easily
forge ciphertexts and transmit them to the client or server. The
use of RC4 is also concerning, since it is known to leak part of
the plaintext to the adversary. These connections seem to only
have two end points: a mail server likely serving legacy clients
outside the network and another server owned by a health care
company that deals with medical IT. The latter is concerning
as it allows data packets to travel outside the network with
little integrity and weak confidentiality.

Second, 0.03% of sessions that have been established
negotiated TLS_RSA_WITH_NULL_SHA256 in TLS 1.2 with
an external server. This suite uses RSA for authentication
and SHA2 for hashing, but data in these sessions traversed
the network entirely in the clear (with no encryption). Thus,
anyone on the communications path can access the data.

C. Directional Traffic

So far we have addressed the security of established TLS
sessions overall, but in order to better understand the security
of medical supporting devices in the network, it is necessary to
investigate the behavior of inbound and outbound connections
separately. (Inbound connections are made to a server in the
network from a client outside the network, and outbound
connections made to a serer outside the network from a client

inside the network.) This gives us crucial insights into how
these endpoints might be configured without actively scanning
the end devices and disrupting the hospital’s daily activity.

Figure 6 breaks down the established connections into
the following categories: inbound and outbound; among these
categories, whether (D)TLS 1.2 or above was negotiated; and
among these categories, whether the negotiated cipher suite
was secure, weak, insecure, or broken according to our criteria
outlined in Section VI-B. Outbound connections comprised
87.41% of the traffic, while inbound connections comprised
only 12.59%. The large difference is expected as devices
inside the network will make more connections to external
servers than external clients will connect to devices inside the
hospital. We observe that most (over 85%) of both inbound
and outbound connections used modern protocols (TLS 1.2
or higher); however, this did not correlate with the overall
quality of cipher suites. In particular, we found that the nearly
all inbound connections used insecure cipher suites, while the
majority of outbound connections were secure by this meausre.
Digging deeper, we noticed that SHA1 is used much more
frequently for inbound connections than for outbound. Since
the trend towards deprecating SHA1 is relatively recent, this
discrepancy may indicate lag in patching medical supporting
devices. However, we cannot say for certain without actively
scanning them to determine their configuration and cipher suite
preferences. (It is conceivable that the connecting clients do
not support SHA2.)

To further analyze each medical supporting device and to
gain a network understanding into how they communicate with
other external devices, we investigated the rate at which they
establish secure connections throughout our collection period.
We separated devices by IP address and computed the ratio of
secure connections over total connections established. While
this gives us the individual performance for each device, we
wanted to see how they compare to each other and how they
affect the hospital network as a whole. We compute the average
rate of secure connections as

Ravg :=

∑
i∈IPs Si/Ti

|IPs|
(1)

10



Inbound Outbound
Traffic Direction

0.0

0.2

0.4

0.6

0.8

1.0
Pe

rc
en

t

Rate at which TLS 1.2 is negotiated
Fraction accepting TLS 1.1 or below at least once

Fig. 7: Average secure connection ratio per endpoint (blue)
versus the fraction of devices (orange) for which we observed
negotiation of an obsolete protocol (SSL 3 or TLS 1.1 or
below).

where IPs denotes the set of observed IPs and for each i ∈ IPs,
Ti is the total number of established connections involving i
and Si is the number of that were secure. We computed this
metric for both inbound and outbound connections. In Figure 7,
we show that inbound and outbound traffic do not significantly
differ in terms of average secure connections made by each
device (83.38% for outbound and 88.20% for inbound traffic).
We can additionally infer a partial configuration of medical
supporting devices by analyzing their connections individually.

Since establishing a connection requires both the client and
the server to agree on a protocol and cipher suite, established
connections can tell us what the medical supporting device is
able to accept. As such, we can infer that a device supports an
obsolete TLS/SSL version if we find connections in which such
a protocol was negotiated; if no such connection was made,
then it is likely that one or both of the endpoints only supports
modern protocols. (Again, we cannot say for sure without
an active scan.) Figure 7 shows the fraction of endpoints
to which we observed at least one connection established
using an obsolete protocol (TLS 1.1 or below). In the case
of outbound traffic, the existence of such connection tells us
that the medical supporting device is communicating with a
server that has not been updated to deny insecure protocols
and that the device itself is offering the deprecated version.

We found that 65.87% of medical supporting devices
established an outbound connection with an obsolete protocol
at least once. On the other hand, we found that 47.56% of
these devices made an inbound connection with an obsolete
protocol at least once. Since the devices in the inbound traffic
are operated by the hospital and we have access to all the traffic
of established connections, we can further analyze each server
individually to infer any changes or updates made during our
collection period. In Figure 8, we show the first and last time
an inbound connection was made to each medical supporting
device8 as shown by the blue lines. While the majority of

8We intentionally removed the actual number of devices and replaced it
with a percentage to avoid disclosing any information about the hospital.
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Fig. 8: While the majority of the medical supporting device
in the inbound traffic only negotiated a modern TLS version
(1.2 or above), 47.56% of those devices also negotiated an
obsolete version (1.1 or below). In some cases, this trend did
not change during the entire collection period.

medical supporting devices appear to have dropped support of
obsolete TLS/SSL protocol versions, many other devices have
not. In some cases, connections were exclusively established
using TLS 1.0.

Since our dataset only contains established connections,
and not all TLS/SSL handshake attempts, the apparent decline
in the use of obsolete versions can have different explanations.
First, the fact that we do not see devices making any obsolete
connections after a certain time period might suggest that
the medical supporting device was patched to drop support
for older versions. Second, the lack of established connec-
tions could also mean that clients have no longer requested
handshakes with outdated protocols. In either case, insecure
connections were no longer established.

D. Certificate usage

Since many of the medical supporting devices may have
access to patient information or EHRs, properly authenticating
the server that they are connecting to is crucial. We collected
information about the certificate presented by the server in each
fresh session. Of these sessions, 9.03% were established while
having reported to our monitor with issues relating to unknown
issuer, self-signed, or expired certificates. To understand how
these errors came about, and what they mean for the security
of the sessions, it was necessary to study these certificates in
detail. The following analysis accounts for 98.3% of the traffic
in this category, covering 4, 672 distinct certificates.

a) Unable to get local issuer: The majority (56.37%) of
the non-resumed sessions with an issue was due to the network
monitor not knowing the issuer of the certificate. Looking
closer, 76.33% of these connections appeared to have certifi-
cates that were issued by reputable organizations (e.g., Apple,
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Microsoft, Samsung, IBM). We note that our network monitor
contained the certificate root store provided by Mozilla, the
same root of trust for Firefox; other clients, such as Safari or
Edge, may have a different set of root certificates; this likely
accounts for this large number of certificates with unknown
issuers. However, we found seven certificates, which account
for 11.26% of the traffic for this category, that have no issuer at
all. Coincidently, these certificates have subjects belonging to
cloud-based medical companies. Because we do not know who
issued these certificates, we cannot definitively say that these
certificates are being properly validated. One possibility is
clients connecting to these servers are implementing a custom
validation logic that validates the certificate chain, beginning
with a public key associated with the issuer. This would be
bad cryptographic “hygiene”, but is theoretically secure.

b) Self-signed Certificates: A self-signed certificate has
the same subject and issuer. From the established connections
that reported issues, 43.1% were caused by either a self-signed
certificate presented to the client or a self-signed certificate
found in the validation chain. The acceptance of a self-signed
certificate essentially bypasses the security goal of a public
key infrastructure because the client would now place the trust
anchor on any server that presented the self-signed certificate,
rather than the CA that properly asserts the server’s identity.
In reality, many enterprises make use of self-signed certificates
for their internal networks as they are free to make and they
can place the trust anchor on themselves. While self-signed
certificates can be considered an attack vector for medical
supporting devices, further investigation needs to go into who
the issuers of these types of certificates are (e.g., verifying that
the issuer of the certificate is part of the trusted root stores in
the medical supporting device).

c) Expired Certificates: Finally, 0.51% of non-resumed
connections used an expired certificate. These connections
have a total of 721 distinct certificates that overwhelmingly
(96.26% of the certificates) appear to be for non-medical
services (e.g., advertising services). While this shows that the
connections established with these certificates are minimal,
medical supporting devices should have properly closed a
session when presented with a certificate that is no longer
valid. This issue does not necessarily imply that the session
is vulnerable to an attack; however, it does mean the security
of the connection is dependent on the client and server imple-
mentation. For example, accepting an expired certificate could
be dangerous, but a certificate being expired does not mean the
corresponding secret key has necessarily been compromised.

E. Certificate Transparency

We were able to collect a total of 350,580 distinct certifi-
cates passing through the hospital network.9 To see how many
of those are widely seen by the Internet, we compared our set
of certificates to those found in the Certificate Transparency
(CT) logs.10 CT is intended to prevent the numerous pitfalls
discussed in the previous section. By comparing the certificates
in the hospital network to those present in CT logs we can get

9Note that not all of these certificates were used to establish a connection
to medical supporting devices.

10The logs in our data set included those that were compliant with Chrome’s
policy [1] (e.g., Digicert, Comodo, Cloudfare, Google, Venafi).
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Fig. 9: Certificates belonging to a hospital are documented less
frequently in Certificate Transparency logs than those from
services found on Alexa’s top 500.

a sense of the overall quality of certificates seen within the
network. We found that 84.41% of the certificates seen were
available in at least one CT log (no collision found with any
self-signed certificates found in our dataset). We expect this
number to be high because medical supporting devices connect
with many major services across the Internet.

Additionally, our traffic aggregation point is in a position
to collect certificates that have been seen both internally to
the hospital and externally to the rest of the Internet. This
unique perspective allows us to perform a measurement of
the transparency rate of certificates owned by the hospital
versus those owned by popular services. To do the comparison,
we collected all the unique services (e.g., google.com and
google.fr would be considered as one service) found in
Alexa’s top 500 domains and looked for matching strings of
those services inside the subject field of the certificate. Since
this process was done using regular expressions, we removed
any service that had a name of less than five characters to
prevent false positives. We looked for services rather than
domains to prevent inaccurate results. Certificates may contain
abbreviations or other similar discontinuities that may cause a
misclassification when looking for domains only. For example,
if we search for netflix.com we would not account for
*.1.nflxso.net, which is a certificate for a content distri-
bution domain used by the Netflix service. For each service, we
checked how many of the certificates seen by the hospital were
available in the CT logs. This process gives us the transparency
rate of our network and the top Internet services. Since only
a subset of the certificates of each service pass through our
hospital dataset, to avoid bias from small samples in this study,
we also removed any service that had fewer than 10 distinct
certificates as a small sample size can have drastic changes in
the transparency metric.

Figure 9 shows the transparency rate of each service along
with the transparency rate of the hospital. We note that the CT
logs only account for 56.6% of all certificates belonging to
a domain (or sub-domain) of the hospital. In comparison, the
services found in Alexa’s top 500 domains show over 90%
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transparency for all but 5 services. Many factors may play
into this observation, such as network administrators not using
CT or purposefully neglecting CT to avoid revealing network
details. Adversaries could potentially use CT logs to help map
a hospital’s network for an attack. However, The exact reason
for the low percentage is not known to us.

F. TLS/SSL Summary

While communication channel setup for medical support-
ing devices is not perfect, they appear to use secure standards
more frequently than the rest of the Internet. As part of our
D-HAI analysis, we saw that medical supporting devices use
secure protocols (i.e., TLS 1.2) at a higher rate than our
Internet baseline with an 11% difference. Regarding cipher
suite quality, the baseline for the Internet had a similar break-
down to the data observed from medical supporting devices.
The major difference lay in the hashing algorithms that were
used, and was an area in which the hospital operated with
more security. The hospital network is observed to use the
weak SHA1 hashing algorithm roughly 10% less frequently
than our baseline data. Correspondingly, the use of the secure
hashing algorithms is higher than the baseline, with the broken
MD5 algorithm seeing low use in either case. While ideally
this percentage would be less than observed, the hospital is
still performing significantly better than online connections in
general. Furthermore, when examining the inbound traffic we
discovered that 47% of the servers administered by the hospital
were negotiated an obsolete protocol at least once. While some
appeared to have been updated early on to not support these
protocols, other servers have continued accepting old SSL/TLS
versions throughout the whole collection period.

Finally, 84.41% of all certificates seen throughout our
collection period were found in CT. Of the certificates used
to establish non-resumed TLS/SSL connections with medical
supporting devices, only a few (3,464) appeared to have an is-
sue regarding unknown CA, self-signed, or expired certificates.
Though the problem is minimal, certificate usage by medical
supporting device needs improvement.

VII. DISCUSSION

A. Hospital Ecosystem

While our analysis sees mostly benign traffic, there is a
small portion of traffic that appears malicious or uses poor
security protocols and encryption. Given the critical role of
hospitals and the high value of data they keep, we believe
that this small portion of bad behavior is still concerning.
Accordingly, all findings have been turned over to the hospital
for further investigation.

While our research covers major Internet protocols used in
the hospital network, the security of a hospital’s ecosystem
is multidimensional. As shown in Figure 10, the majority
of hospital related data breaches reported to HIPAA11 in the
United States during our collection period were caused by the
unauthorized access of data. In the context of our work, these
include stolen credentials, misplaced items, improper disposal,

11This data was collected through monthly reports found in HIPAA Jour-
nals [3]. While the reports separate data breaches into various categories, we
combined the data in such a way that represents what we could see from a
network perspective.
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Fig. 10: Data breaches caused by unauthorized access (rather
than security breach) are more commonly reported to HIPAA
during our collection period.

thefts, or employees accessing data which is not directly related
to their work. From the viewpoint of this study, detecting
unauthorized accesses similar to these is highly unlikely.
These kinds of unauthorized accesses rarely leave a network
trace, making them opaque to our study. Addressing such
issues requires research into proper access control techniques
that range from the classification and compartmentation of
data to requiring multi-factor authentications. While hospitals
already make use of some of these techniques [34], further
research into access control security in the context of a hospital
ecosystem is required.

B. Future Work

a) Medical Devices: In Section IV, we mentioned that
our work does not focus on medical devices as they are
protected from other devices inside the network and the
Internet by using a combination of firewalls and VPNs. While
such protection leaves them mostly invisible from a network
perspective (and our analysis), they still make up part of a
hospital ecosystem and can be vulnerable from attacks near
their physical location [42]. Further analysis into the local area
network connectivity of these devices would greatly benefit
the community’s knowledge of a hospital’s ecosystem. Such
large scale work can be used to create fingerprinting profiles
of various medical devices based on the network calls made.
These profiles can then in turn be used to mitigate lateral
expansion of attacks from within the hospital. Similar to this
study, safe design and ethical decision making need to be a
top priority as such research would be done with devices that
can have a direct effect on the patient care.

b) Generalizing Hospital Ecosystems: Our case study
focused on the traffic from one hospital for six months. While
our analysis and techniques can be used to study other hospital
networks, generalizing these results to all hospitals may con-
stitute a threat to population validity. To generalize trends to
other hospitals, a large scale multi hospital analysis needs to
be done. Doing such work would require a large collaborative
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effort between researchers and the different administrations
from each hospital in order to ensure the safety of the patients
and the data. Our goal of the case study and Section III was to
ease the process of obtaining data from various hospitals and
make a larger scale future study less challenging to perform.

c) Understanding Non-technical Issues: As mentioned
in the previous subsection, a hospital’s security is multi-
dimensional. Understanding the root causes of data breaches
from a non-technical aspect is important in order to develop
defensive protocols that are suited for healthcare systems.
As such, future work on this end would require surveying
the hospital employees to see what security protocols they
follow. Such survey would consider employees with different
roles (e.g., doctors/nurses, HR, researchers, medical device
technicians) that have different levels of 1) access to medical
data, 2) dependence of network connectivity for work-related
material, and 3) IT knowledge to understand the root cause of
EHR leakage or cyber-attacks.

VIII. RELATED WORK

Society relies on the constant availability of hospitals for
emergency needs. In recent years, the stance of the research
community has been more directed towards embedded de-
vices [25], [28], [29], [20] and body area networks (BAN) [37],
[42]. Rubin et al. give a comprehensive discussion on the
current state of BAN and embeddable medical devices. In
their, work Rubin et al. address the emerging threats and
challenges that exist with these types of devices, such as
remote attackers. Additionally, companies have also spent time
in reverse engineering currently infected medical devices but
much of the approach focuses on specific cases and is not a
scalable solution [45]. While this research is extremely useful
in security, medical devices are only part of a hospital’s whole
ecosystem. A full hospital network analysis has yet to be done.

Prior researchers have collected passive DNS data [47],
[36], [15], [11] similar to what we have done here. In
these prior works, the researchers have used their data to
reverse engineer and predict network communications made
by malware-infected devices. Passive DNS analysis has shown
to be useful for detecting various C&C of botnets [48] as well
as prediction of malicious domain names created by domain
generated algorithms (DGAs) [12]. By having a global view of
the network, passive DNS analysis is able to identify individual
infected devices and prevent malware from propagating to
other devices in the network. While active DNS probing has
been useful in detecting bad-natured traffic [31], we focus on
passive DNS data so that we do not disturb traffic from critical
devices in the hospital network.

Another analysis method used by researchers involves the
collection of SSL certificates [23], [18], [9] (i.e., X.509). While
passive DNS analysis tells us about infected devices based
on network calls, SSL certificates can give insight into the
configuration of the devices. More specifically, previous work
has shown that many devices do not adequately validate a
certificate [26], accept deprecated (and insecure) cryptographic
standards, or suffer from MitM vulnerabilities [43]. As a way
to battle mis-issuance of such certificates, publicly verifiable
logs [35] have been created in order to make certificate
issuance more transparent.

In our paper, we combine many of the network analysis
methods mentioned above while focusing on medical support-
ing devices and the network context in which they reside.

IX. CONCLUSION

Understanding the threat surface of the modern healthcare
system requires a characterization of not only the individual
devices within the environment, but a holistic analysis of the
entire ecosystem, and must be done in a manner that does not
endanger operational networks. We performed the first Digital
Healthcare-Associated Infection (D-HAI) analysis of a major,
multi-campus healthcare system. Our longitudinal case study
examined all Internet-facing traffic over a six-month period
from January to June 2018. We find that while the majority of
medical devices have minimal exposure to the Internet, medical
supporting devices that support the hospital environment make
millions of connections. We examined over 775 million DNS
queries across 17 million domains and discovered low amounts
of malicious traffic (0.01%) and small but significant traces
of botnet activity. We also observed 325 million SSL and
TLS handshakes over the analysis period, discovering that
almost 46% of these connections are made with weak or
insecure ciphers, largely because of a reliance on SHA1 but
also because of outdated cipher suites. More importantly, we
found that 47% of the servers negotiated an obsolete version
of TLS (1.1 or below) at least once. Our D-HAI analysis of the
hospital ecosystem is repeatable, non-invasive, and is designed
in accordance to ethical considerations. We find that while
much has been done to secure medical devices, more must
be done to ensure the protection of this critical environment.
Aside from the analytical results presented, our hope is for
this paper to aid future researchers in doing ethical research
by outlining the possible limitations they might have when
working in sensitive environments.
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